Salinity significantly reduces plastic-degrading bacteria from rivers to oceans

Microplastics (MPs) are found in rivers and offshore areas. However, there is a lack of detailed research on the changes of surface microbial species attached to MPs when MPs enter the sea. Moreover, no study has been conducted on changes to plastic-degrading bacteria during this process. In this study, using rivers and offshore in Macau, China as examples, bacterial diversity and bacterial species composition attached to surface water and MPs at four river sampling stations and four offshore sampling stations around Macau were studied. Plastic-degrading bacteria, plastic-related metabolic processes, and plastic-related enzymes were analyzed. The results showed that MPs-attached bacteria in rivers and offshore were different with the planktonic bacteria (PB). The proportion of major families on the surface of MPs continued to increase from rivers to estuaries. MPs could significantly enrich plastic-degrading bacteria both in rivers and offshore. The proportion of plastic-related metabolic pathways on the surface bacteria of MPs in rivers was higher than that in offshore waters. Bacteria on the surface of MPs in rivers may induce higher plastic degradation than offshore. Salinity significantly alters the distribution of plastic-degrading bacteria. MPs may degrade more slowly in the oceans, posing a long-term threat to marine life and human health.
刊物名称: 
Journal of hazardous materials
年: 
2023
卷期: 
451
页码: 
131125
作者: 
Dong, Xuri; Zhu, Lixin; He, Yanru; Li, Changjun; Li, Daoji
论文原文: