全新世拉布拉多洋流强度变化及其气候驱动解译

  国际地圈-生物圈计划(International Geosphere – Biosphere Programme, IGBP)的核心研究计划之一是过去全球变化研究计划(Past Global Changes, PAGES)。古洋流变化是过去全球变化研究的重要内容,如何从沉积记录中提取过去气候变化信息成为PAGES的重要科学问题之一(高抒等, 1999, 2019; Yang et al., 2020, 2021)。拉布拉多洋流 (Labrador Current,LC),是全球海洋环流的一个重要组成部分,分为两个分支:一个内部陆架分支(inner LC),一个外部陆坡分支(outer LC)。它从北极向北大西洋地区输送淡水,从而调节对全球气候有着重要影响的大西洋经向翻转环流 (Atlantic Meridional Overturning Circulation, AMOC)(图1)。古气候研究指出, AMOC减弱或者停止曾使得北半球绝大地区的气温在几十年甚至更短的时期内急剧下降(e.g., Thornalley et al., 2018)。实测和模型结果显示,在全球变暖加剧的情况下,LC在未来几十年内将会持续增强。因此,海洋环流的变化将有可能在未来再次造成全球大范围的气候骤变。虽然科学家们对于LC对AMOC和北大西洋气候变化上的深刻影响具有很大程度上的共识,但LC的机制本身仍然是海洋科学研究领域亟待解决的核心问题之一。

 
图1. 北大西洋AMOC相关的主要组成部分示意图 (Little et al., 2019). NRG =Northern Recirculation Gyre; LC = Labrador Current; DWBC = Deep WesternBoundary Current; IC = Irminger Current; EGIC = East Greenland-Irminger Current;LSW = Labrador Sea Water; ISOW = Iceland-Scotland Overflow Water; DSOW =Denmark Straits Overflow Water.
 

  前人已利用Labrador Shelf北部(LC 北界)和Flemish Cap附近的沉积记录对全新世期间的LC强度变化进行了重建工作(图2;Keigwin et al., 2003; Sicre et al., 2014; Rashid etal., 2017; Hoffmann et al., 2019; Lochte et al., 2019; Piper et al., 2021)。然而,由于LC 南界(加拿大东海岸Scotian Shelf)研究记录欠缺,关于全新世LC强度的变化仍存在争议,这极大限制了我们对全新世LC强度时空变化及其气候驱动机制的认识。

 
图 2. 研究区概况和北大西洋不同地区的LC记录(Keigwin et al., 2003; Sicre et al., 2014; Rashidet al., 2017; Hoffmann et al., 2019; Lochte et al., 2019; Piper et al., 2021). AOSW:Arctic Ocean Surface Water, BC: Baffin Current, WGC: West Greenland Current,EGC: East Greenland Current, IC: Irminger Current, NAC: North Atlantic Current.
 
 

  实测和模型结果显示,敏感粒度参数指标(i.e. the mean grain size of the sortable-silt,10–63 μm;)可用于评估底流的强度(e.g., McCave et al., 1995; Boessenkool et al., 2007;Culp et al., 2021)。本研究基于Scotian Shelf的沉积记录(cores 96–20 和93–07),利用the sortable-silt proxy,重建了该区域全新世LC强度的变化(分辨率~ 25年)。结果发现,Scotian Shelf 的 LC 强度在9.4–8.0 ka略有减弱,8.0–5.0 ka 显著增强,5.0–1.8 ka 持续减弱,1.8–0.5 ka 逐渐增强(图3a)。集成其他地区全新世LC强度重建资料(图3b-e)表明,由于inner 和outer LC 的位置变化,不同地区记录的全新世LC强度变化具有异步性。Labrador Shelf北部的记录代表了全新世inner LC信号,而Scotian Shelf的 LC 记录则涉及全新世不同时期的inner 或outer LC信号。

 
图 3. 北大西洋全新世LC强度重建集成. (a) The  record on the Scotian Shelf. (b) The  record on the Flemish Pass and Cap (cores 57,78 and 153; Piper et al., 2021) and Orphan Basin slope (cores 27GGC and 28MCX;Hoffmann et al., 2019). (c) SST on the northeastern Newfoundland coast (coresAI07-03G and AI07-12G; Sicre et al., 2014) and Scotian Shelf (core MC-29;Keigwin et al., 2003) (d) Total alkenone concentrations on the northern LabradorShelf (Lochte et al., 2019). (e) The  record on the northern Labrador Shelf (Rashidet al., 2017).
 

  经与北大西洋气候关键因子对比分析(图4),作者提出1)全新世期间,inner LC强度变化主要由AMOC-related亚极地海面温度 (SST) 和北大西洋涛动 (NAO) 控制,2)outer LC 主要由 NAO 主导,10–5 ka期间也受北极冰川融水控制;3)千年尺度上inner/outer LC 强度与 NAO 呈负/正相关。研究结果对于深入理解未来气候变化格局下LC强度的时空变化具有重要科学价值,也为西北太平洋的环流格局研究提供了重要参考。

 
图4. 北大西洋全新世LC强度变化与气候动态. (a) The  record on the Scotian Shelf. (b) The  record on Flemish Pass and Cap (Piper et al.,2021) and Orphan Basin slope (Hoffmann et al., 2019). (c) The  record on the northern Labrador Shelf (Rashidet al., 2017). (d) SST reconstructions from the subpolar North Atlantic (coreLO09-14; Berner et al., 2008). (e) Reconstructed AMOC strength from northernIceland Basin (δ18O; Hall et al., 2004), off Cape Hatteras ( record; Thornalley et al., 2018) and BermudaRise (εNd; Lippold et al., 2019). (f) NAO reconstructionsfrom southwestern Greenland (NAO index; Olsen et al., 2012) and NorthwestAfrica (δ18O; Wassenburg et al., 2016). (g) Agassiz ice-capmelt reconstructions from the Canadian Arctic (Fisher et al., 2012).
 

  相关主要研究成果发表在国际主流期刊《Quaternary Science Reviews》上,第一作者为南京师范大学海洋科学与工程学院的杨阳博士。研究得到国家自然科学基金(41706095和41530962),博士后国际交流计划派出项目(PC2018029),the Geological Survey of Canada和the Canada First Research Excellence Fund的联合资助。

 

参考文献

高抒, 汪亚平,贾建军,1999. 国际地圈生物圈计划的科学问题. 科学, 51(6), 8-11.
 
高抒, 贾建军, 杨阳, 周亮, 魏稳, 梅衍俊, 李亚南, 王黎, 赵培培, 刘桢峤, 张丽芬, 2019. 陆架海岸台风沉积记录及信息提取. 海洋学报, 41(10), 141-160.
 
Boessenkool, K. P., Hall, I. R., Elderfield, H.,Yashayaev, I., 2007. North Atlantic climate and deep‐ocean flow speed changes during the last 230 years. Geophysical Research Letters, 34, L13614.
 
Culp, J., Parent, A. M., Abolfazli, E., Strom, K.,Romans, B. W., 2021. Advective sorting of silt by currents: a laboratory study. Sedimentology, 68(7), 3116-3140.
 
Hoffmann, S. S., Dalsing, R. E., Murphy, S. C.,2019. Sortable silt records of intermediate-depth circulation and sedimentationin the Southwest Labrador Sea since the Last Glacial Maximum. Quaternary Science Reviews, 206, 99-110.
 
Keigwin, L. D., Sachs, J. P., Rosenthal, Y., 2003.A 1600-year history of the Labrador Current off Nova Scotia. Climate Dynamics,21(1), 53-62.
 
Little, C. M., Hu, A., Hughes, C. W., McCarthy, G.D., Piecuch, C. G., Ponte, R. M., Thomas, M. D., 2019. The relationship between US east coast sea level and the Atlantic meridional overturning circulation: Areview. Journal of Geophysical Research: Oceans, 124(9), 6435-6458.
 
Lochte, A. A., Repschläger, J., Seidenkrantz, M.S., Kienast, M., Blanz, T., Schneider, R. R., 2019. Holocene water mass changes in the Labrador Current. The Holocene, 29(4), 676-690.
 
McCave, I.N., Manighetti, B., Robinson, S.G., 1995.Sortable silt and fine sediment size/composition slicing: parameters for palaeocurrent speed and palaeoceanography. Paleoceanography, 10(3), 593-610.
 
Piper, D. J., Li, G., Andrews, J. T., Jennings, A.E., Robertson, L., 2021. Transport of fine-grained sediment in oceanic currents: Holocene supply to sediment drifts around Flemish Cap by the Labrador Current. Marine Geology, 436, 106494.
 
Rashid, H., Piper, D. J., Lazar, K. B., McDonald,K., Saint‐Ange, F., 2017. The Holocene Labrador Current: Changing linkages toatmospheric and oceanographic forcing factors. Paleoceanography, 32(5),498-510.
 
Sicre, M. A., Weckström, K., Seidenkrantz, M. S.,Kuijpers, A., Benetti, M., Massé, G., Ezat, U., Schmidt, S., Bouloubassi, I.,Olsen, J., Khodri, M., Mignot, J., 2014. Labrador current variability over thelast 2000 years. Earth and Planetary Science Letters, 400, 26-32.
 
Thornalley, D. J., Oppo, D. W., Ortega, P., Robson,J. I., Brierley, C. M., Davis, R., Hall, I.R., Moffa-Sanchez, P., Rose, N.L.,Spooner, P.T., Yashayaev, I., Keigwin, L. D., 2018. Anomalously weak LabradorSea convection and Atlantic overturning during the past 150 years. Nature,556(7700), 227-230.
 
Yang, Y., Zhou, L., Alexandre Normandeau, Jia,J.J., Yin, Q.J., Wang. Y.P., Shi, B.W., Gao, S., 2020. Exploring records oftyphoon variability in eastern China over the last 2000 years. GeologicalSociety of America Bulletin, 132 (11-12),2243-2252.
 
Yang, Y., Piper, D.J.W., Normandeau, A., Zhou, L.,Jia, J.J., Wang. Y.P., Gao, S., 2021. A late Holocene shift in typhoon activitypattern recorded by coastal sedimentary archives. Sedimentology, https://doi.org/10.1111/sed.12934.
 
Yang, Y., Piper, D. J. 2021.Alongflow variability of the Labrador Current during the Holocene. Quaternary Science Reviews, 267, 107110.
 
 

作者介绍:

  杨阳博士2017年获得南京大学海洋地质专业博士学位,随后在华东师范大学河口海岸学国家重点实验室和加拿大贝德福德海洋研究所从事博士后研究。目前在南京师范大学海洋科学与工程学院任职,主要从事古风暴沉积和海洋沉积动力过程等研究。主持国家自然科学基金委青年项目和中国博士后科学基金面上项目各1项,作为骨干参加国家自然科学重点基金1项,获得2018年国家博士后国际交流计划派出项目资助。近五年,围绕陆架海岸过程-产物关系及其环境记录这一主题,在沉积物临界起动条件、河口海岸源汇过程及人类活动效应、古风暴/洋流信息的沉积记录提取等方面取得系列创新成果,相关工作发表于Geophysical Research Letters,Quaternary Science Reviews, Geological Society of America Bulletin, Sedimentology等杂志。