葛振鸣

2019/01-2022/12 国家自然科学基金(面上项目),41871088,“海平面上升对盐沼湿地碳库要素稳定性与固碳效率的影响及预测”,主持
2016/01-2019/12 国家自然科学基金(面上项目),41571083,“滨海盐沼湿地多组分碳过程与净收支的复杂水文调控机制”,主持
2024/03-2027/03 国家重点研发计划,2023YFE0113100, “近海蓝碳生态系统的碳汇潜力与多功能协同增汇途径”,骨干
2022/01-2025/12 国家自然科学基金重点专项,“陆海统筹下的中国海岸带生态系统保护修复与固碳增汇协同增效”,42141016,骨干
2021/09-2023/08上海市科委长三角科技创新共同体领域项目“长三角滨海与湖滨湿地修复及碳汇提升技术示范应用”,21002410100,主持
2021/01-2024/12 国家自然科学基金(长江水科学研究联合基金),U2040204,“长江口湿地地貌演变机理及生态修复方法研究”,骨干
2017/07-2020/12 国家重点研发计划,2017YFC0506001,“长三角典型河口湿地生态恢复与产业化技术”课题-1,骨干
2018/01-2021/12 国家重点研发计划(政府间合作项目),2016YFE0133700,“应对转型中的河口三角洲”,骨干
2013/01-2015/12 国家自然科学基金 “基于植物生理生态过程-遥感耦合模型的长江口湿地植被生产力动态研究”(41201091), 主持
2010/01-2014/12 国家科技部973项目 “我国典型海岸带系统对气候变化的响应机制及脆弱性评估研究”(2010CB951204), 骨干
2012/01-2013/12 国家重点实验室自主业务课题 “长江口湿地碳源/汇稳定性对气候变化的响应及适应性调控策略研究”,骨干
2009/01-2012/12 芬兰杰出教授计划(FiDiPro) “气候候变化与森林/湿地碳源-汇动态及其管理”, 芬兰科学院(27299-A5060-06), 工作组组长
2009/01-2010/12 东芬兰大学博士后基金 “气候变化对森林生态系统碳源/汇动态的影响与适应性管理”, 主持
2009/06-2011/06 MOTIVE-“林业应对气候变化管理模型”, 欧盟-第七框架计划(226544), 骨干
2007/12-2008/10 上海市绿化和市容管理局“水源湿地生态修复”重点课题 “淀山湖湿地修复与重建关键技术研究与规划”, 主持
2007/05-2008/07 上海市交通运输与港口管理局“生态型”港口建设重点课题 “上海‘生态港’建设与评估体系建立”, 主持
2006/01-2010/12 国家‘十一五’科技支撑重大项目 “崇明生态系统修复关键技术开发和应用研究”(2006BAC01A14), 骨干
2010/07-2012/07 上海市科委“崇明科技”重大专项 “崇明岛湿地碳通量监测和管理平台关键技术集成”(10dz1200602), 骨干
2007/01-2009/06 上海市科委“崇明生态建设”重大专项 “崇明岛数字生态建设决策支持系统的开发与利用”(07DZ12037), 骨干
2006/06-2008/06 上海市科委“登山计划”重大项目 “城镇绿地系统构建和植被功能优化技术研究和示范”(06DZ12303), 骨干
2007/10-2009/09 上海科委“专业技术平台建设”重大项目 “上海野生动物疫源疫病监控技术平台建设”(07DZ22940), 骨干
1.Zhou, K., Liu, S., Cheng, H.F.*, Zhu, K.H., Zhang, W., Lyu, Q., Chen, H.Y., Xin, P., Ge, Z.M.*, 2024. Nature-based solutions to mitigate early marsh-edge erosion in a coastal wetland. Ecological Engineering, 198, 107133.
2.Tan, L.S., Ge, Z.M.*, Li, S.H., Zhou, K., Lai, D.Y.F., Temmerman, S., Dai, Z.J., 2023. Impacts of land-use change on carbon dynamics in China's coastal wetlands. Science of The Total Environment, 890, 164206.
3.Zhao, W., Zhu, K.H., Ge, Z.M.*, Lv, Q., Liu, S.X., Zhang, W., Xin, P., 2023. Effects of plastic contamination on carbon fluxes in a subtropical coastal wetland of East China. Journal of Environmental Management, 345, 118654.
4.Li, Y.L., Ge, Z.M.*, Xie, L.N., Li, S.H., Tan, L.S., Hancke, K., 2023. Effects of waterlogging and elevated salinity on the allocation of photosynthetic carbon in estuarine tidal marsh: an mesocosm experiment. Plant and Soil, 482, 211–227.
5.Chen, H.Y., Hua, Y., Gu, R.T., Liu, T.T., Tang, J.W., Zhang, W., Ge, Z.M.*, 2023. Contribution of microphytobenthos to carbon sink in the brackish and freshwater tidal flats of the Yangtze Estuary. Marine Ecology Progress Series, 720, 25–37.
6.Zhang, W., Zeng, J., Ge, Z.M., Zhu, K.H., Zhou, K., Liu, S.X., Lyu, Q., Chen, H.Y., Yun, P., 2023. Dike risk evaluation incorporating the contribution of coastal wetlands: A case study on Chongming Island, China. Ocean & Coastal Management, 246, 106874.
7.Tan, L.S., Ge, Z.M.*, Ji, Y., Lai, D.Y.F., Temmerman, S., Li, S.H., Li, X.Z., Tang, J.W., 2022. Land use and land cover changes in coastal and inland wetlands cause soil carbon and nitrogen loss. Global Ecology and Biogeography, 31, 2541–2563.
8.Zhang, W., Ge, Z.M.*, Li, S.H., Tan, L.S., Zhou, K., Li, Y.L., Xie, L.N., Dai, Z.J., 2022. The role of seasonal vegetation properties in determining the wave attenuation capacity of coastal marshes: Implications for building natural defenses. Ecological Engineering, 175, 106494.
9.Li, Y.L., Ge, Z.M.*, Xie, L.N., Li, S.H., Tan, L.S., 2022. Effects of waterlogging and salinity increase on CO2 efflux in soil from coastal marshes. Applied Soil Ecology, 170, 104268.
10.Xin, P., Wilson, A., Shen, C., Ge, Z., Moffett, K. B., Santos, I. R., Chen, X., Xu, X., Yau, Y.Y.Y., Moore, W., Li, L., Barry, D.A., 2022. Surface water and groundwater interactions in salt marshes and their impact on plant ecology and coastal biogeochemistry. Reviews of Geophysics, 60, e2021RG000740.
11.Xin, P., Wilson, A., Ge, Z., Santos, I., 2022. Understanding the importance of salt marshes, Eos, 103, https://doi.org/10.1029/2022EO225012.
12.Tan, L.S., Ge, Z.M.*, Li, S.H., Li, Y.L., Xie, L.N., Tang, J.W., 2021. Reclamation-induced tidal restriction increases dissolved carbon and greenhouse gases diffusive fluxes in salt marsh creeks. Science of The Total Environment, 773, 145684.
13.Li, S.H., Ge, Z.M.*, Tan, L.S., Zhou, K., 2021. Coupling Scirpus recruitment with Spartina control guarantees recolonization of native sedges in coastal wetlands. Ecological Engineering, 166, 106246.
14.Li, S.H., Ge, Z.M.*, Xin, P., Tan, L.S., Li, Y.L., Xie, L.N., 2021. Interactions between biotic and abiotic processes determine biogeomorphology in Yangtze Estuary coastal marshes: Observation with a modeling approach. Geomorphology, 395, 107970.
15.Tan, L.S., Ge, Z.M.*, Zhou, X.H.*, Li, S.H., Li, X.Z., Tang, J.W., 2020. Conversion of coastal wetlands, riparian wetlands and peatlands increases greenhouse gas emissions: A global meta-analysis. Global Change Biology, 26, 1638–1653.
16.Li, Y.L., Guo, H.Q., Ge, Z.M.*, Wang, D.Q., Liu, W.L., Xie, L.N., Li, S.H., Tan, L.S., Zhao, B., Li, X.Z., Tang, J.W., 2020. Sea-level rise will reduce net CO2 uptake in subtropical coastal marshes. Science of the Total Environment, 747, 141214. DOI: 10.1016/j.scitotenv.2020.141214.
17.Li, S.H., Ge, Z.M.*, Tan, L.S., Hu, M.Y., Li, Y.L., Li, X.Z., Ysebaert, T., 2020. Morphological and reproductive responses of coastal pioneer sedge vegetations to inundation intensity. Estuarine, Coastal and Shelf Science, 244, 106945. DOI: 10.1016/j.ecss.2020.106945.
18.Tan, L.S., Ge, Z.M.*, Fei, B.L., Xie, L.N., Li, Y.L., Li, S.H., Li, X.Z., Ysebaert, T., 2020. The roles of vegetation, tide and sediment in the variability of carbon in the salt marsh dominated tidal creeks. Estuarine, Coastal and Shelf Science, 239, 106752. DOI: 10.1016/j.ecss.2020.106752.
19.Xie, L.N., Ge, Z.M.*, Li, Y.L., Li, S.H., Tan, L.S., Li, X.Z., 2020. Effects of waterlogging and increased salinity on microbial communities and extracellular enzyme activities in native and exotic marsh vegetation soils. Soil Science Society of America Journal, 84, 82–98.
20.Tang, H., Xin, P., Ge, Z.M., Gong, Z., Yang, Y., Zhang, Y., Qi, W., 2020. Response of a salt marsh plant to sediment deposition disturbance. Estuarine, Coastal and Shelf Science, 237, DOI: 10.1016/j.ecss.2020.106695.
21.Cui, L., Yuan, L., Ge, Z.M., Cao, H., Zhang, L., 2020. The impacts of biotic and abiotic interaction on the spatial pattern of salt marshes in the Yangtze Estuary, China. Estuarine, Coastal and Shelf Science, 238, 106717.
22.Xue, L., Jiang, J., Li, X., Yan, Z., Zhang, Q., Ge, Z.M., Tian, B., Craft, C., 2020. Salinity affects topsoil organic carbon concentrations through regulating vegetation structure and productivity. Journal of Geophysical Research: Biogeosciences, 125, e2019JG005217.
23.Ge, Z.M.*, Li, S.H., Tan, L.S., Li, Y.L., Hu, Z.J., 2019. The importance of the propagule-sediment-tide “power balance” for revegetation at the coastal frontier. Ecological Applications, 29, e01967. DOI:10.1002/eap.1967.
24.Hu, M.Y., Ge, Z.M.*, Li, Y.L., Li, S.H., Tan, L.S., Xie, L.N., Hu, Z.J., Zhang, T.Y., Li, X.Z., 2019. Do short-term increases in river and sediment discharge determine the dynamics of coastal mudflat and vegetation in the Yangtze Estuary? Estuarine, Coastal and Shelf Science, 220, 176–184.
25.Zhao, L.X., Xu, C., Ge, Z.M., van de Koppel, J., Liu, Q.X., 2019. The shaping role of self-organization: linking vegetation patterning, plant traits and ecosystem functioning. Proceedings of the Royal Society B, 286, 20182859. DOI: dx.doi.org/10.1098/rspb.2018.2859.
26.Liu, L., Wang, D., Chen, S., Yu, Z., Xu, Y., Li, Y., Ge, Z., Chen, Z., 2019. Methane emissions from estuarine coastal wetlands: Implications for global change effect. Soil Science Society of America Journal, 83, 1368–1377. DOI:10.2136/sssaj2018.12.0472.
27.Li, S.H., Ge, Z.M.*, Xie, L.N., Chen, W., Yuan, L., Wang, D.Q., Li, X.Z., Zhang, L.Q., 2018. Ecophysiological response of native and exotic salt marsh vegetation to waterlogging and salinity: Implications for the effects of sea-level rise. Scientific Reports, 8, 2441.
28.Li, H., Dai, S., Ouyang, Z.T., Xie, X., Guo, H.Q., Gu, C., Xiao, X.M., Ge, Z.M., Peng, C.H., Zhao, B., 2018. Multi-scale temporal variation of methane flux and its controls in a subtropical tidal salt marsh in eastern China. Biogeochemistry, 137, 163–179.
29.Xue, L., Li, X.Z., Yan, Z.Z., Zhang, Q., Ding, W.H., Huang, X., Ge, Z.M., Yin, Q.X., 2018. Native and non-native halophytes resiliency against sea-level rise and saltwater intrusion. Hydrobiologia, 806, 47–65.
30.Xue, L., Li, X.Z., Zhang, Q., Yan, Z.Z., Ding, W.H., Huang, X., Ge, Z.M., Yin, Q.X., 2018. Elevated salinity and inundation will facilitate the spread of invasive Spartina alterniflora in the Yangtze River Estuary, China. Journal of Experimental Marine Biology and Ecology, 506, 144–154.
31.Chen, W., Ge, Z.M.*, Fei, B.L., Zhang, C., Liu, Q.X., Zhang, L.Q., 2017. Soil carbon and nitrogen storage in recently restored and mature native Scirpus marshes in the Yangtze Estuary, China: Implications for restoration. Ecological Engineering, 104, 150–157.
32.Wang, H., van der Wal, D., Li, X., van Belzen, J., Herman, P.M.J., Hu, Z., Ge, Z.M., Zhang, L.Q., Bouma, T., 2017. Zooming in and out: scale‐dependence of extrinsic and intrinsic factors affecting salt marsh erosion. Journal of Geophysical Research: Earth Surface, 122, 1455–1470.
33.Zhang, T.Y., Chen, H.P., Cao, H.B., Ge, Z.M., Zhang, L.Q., 2017. Combined influence of sedimentation and vegetation on the soil carbon stocks of a coastal wetland in the Changjiang estuary. Chinese Journal of Oceanology and Limnology, 35, 833–843.
34.Ge, Z.M.*, Wang, H., Cao, H.B., Zhao, B., Zhou, X., Peltola, H., Cui, L.F., Li, X.Z., Zhang, L.Q. 2016. Responses of eastern Chinese coastal salt marshes to sea-level rise combined with vegetative and sedimentary processes. Scientific Reports, 6, 28466.
35.Ge, Z.M.*, Guo, H.Q., Zhao, B., Zhang, C., Peltola, H., Zhang, L.Q., 2016. Spatiotemporal patterns of the gross primary production in the salt marshes with rapid community change: A coupled modeling approach. Ecological Modelling, 321, 110–120.
36.Ge, Z.M.*, Cao, H.B, Cui, L.F., Zhao, B., Zhang, L.Q. 2015. Future vegetation patterns and primary production in the coastal wetlands of East China under sea level rise, sediment reduction and saltwater intrusion. Journal of Geophysical Research - Biogeosciences, 120, 1923-1940.
37.Ge, Z.M.*, Guo, H.Q., Zhao, B., Zhang, L.Q., 2015. Plant invasion impacts on the gross and net primary production of the salt marsh on eastern coast of China: insights from leaf to ecosystem. Journal of Geophysical Research - Biogeosciences, 120, 169–186.
38.Ge, Z.M.*, Zhang, L.Q., Yuan, L. 2015. Spatiotemporal dynamics of salt marsh vegetation regulated by plant invasion and abiotic processes in the Yangtze Estuary: observations with a modeling approach. Estuaries and Coasts, 38, 310–324.
39.Hu, Z.J., Ge, Z.M.*, Ma, Q., Zhang, Z.T., Tang, C.D., Cao, H.B., Zhang, T.Y., Li, B., Zhang, L.Q., 2015. Revegetation of a native species in a newly formed tidal marsh under varying hydrological conditions and planting densities in the Yangtze Estuary. Ecological Engineering, 83, 354–363.
40.Li, S.S., Meng, X.W., Ge, Z.M., Zhang, L.Q., 2015. Vulnerability assessment of the coastal mangrove ecosystems in Guangxi, China, to sea-level rise. Regional Environmental Change, 15, 265–275.
41.Li, S.S., Meng, X.W., Ge, Z.M., Zhang, L.Q., 2015. Evaluation of the threat from sea-level rise to the mangrove ecosystems in Tieshangang Bay, southern China. Ocean & Coastal Management, 109, 1–8.
42.Wang, H., Ge, Z.M.*, Yuan, L., Zhang, L.Q.*, 2014. Evaluation of the combined risk of sea-level rise and sedimentation reduction on the coastal wetlands in the Yangtze Estuary, China. Ecological Engineering, 71, 346–354.
43.Cui, L.F., Ge, Z.M.*, Yuan, L., Zhang, L.Q.*, 2014. Vulnerability assessment of the coastal wetlands in the Yangtze Estuary, China to sea-level rise. Estuarine, Coastal and Shelf Science, 156, 42–51.
44.Ge, Z.M.*, Zhang, L.Q., Yuan, L., Zhang, C. 2014. Effects of salinity on temperature-dependent photosynthetic parameters of a native C3 and a non-native C4 marsh grass in the Yangtze Estuary, China. Photosynthetica, 52, 484–492.
45.Ge, Z.M.*, Kellomaki, S., Zhou, X., Peltola, H. 2014. The role of climatic variability in controlling carbon and water budgets in a boreal Scots pine forest during ten growing seasons. Boreal Environment Research, 19, 181–194.
46.Ge, Z.M., Cao, H.B., Zhang, L.Q. 2013. A process-based grid model for range expansion of Spartina alterniflora on the coastal saltmarshes in the Yangtze Estuary. Ecological Engineering, 58, 105–112.
47.Ge, Z.M.*, Kellomaki, S., Peltola, H., Zhou, X., Vaisanen, H. 2013. Impacts of climate change on primary production and carbon sequestration of boreal Norway spruce forests: Finland as a model. Climatic Change, 118, 259–273.
48.Ge, Z.M.*, Kellomaki, S., Peltola, H., Zhou, X., Vaisanen, H. 2013. Adaptive management to climate change for Norway spruce forests along a regional gradient in Finland. Climatic Change, 118, 275–289.
49.Ge, Z.M.*, Zhou, X., Kellomaki, S., Peltola, H., Wang, K.Y. 2013. Measured and modeled biomass growth in relation to photosynthesis acclimation of Reed canary grass under elevated temperature, CO2 enrichment and different water regimes. Biomass & Bioenergy, 46, 251–262.
50.Zhang, C., Ge, Z.M., Kellomaki, S., Wang, K.Y., Zhou, X. 2013. Effects of elevated CO2 and temperature on biomass growth and allocation in a boreal bioenergy crop (Phalaris arundinacea L.) from young and old cultivations. BioEnergy Research, 6, 651–662.
51.Zhang, C., Kellomaki, S., Wang, K.Y., Zhou, X., Ge, Z.M., Strandman, H. 2013. Impacts of elevated temperature and CO2 with varying groundwater levels on seasonality of height and biomass growth of a boreal bioenergy crop (Phalaris arundinacea) – a modeling study. Botany, 91, 260–272.
52.Ge, Z.M.*, Zhou, X., Biasi, C., Kellomaki, S., Peltola, H., Martikainen, P.J. 2012. Carbon assimilation and allocation (13C labeling) in a boreal perennial grass (Phalaris arundinacea) subjected to elevated temperature and CO2 through a growing season. Environmental and Experimental Botany, 75, 150–158.
53.Ge, Z.M.*, Kellomaki, S., Peltola, H., Zhou, X., Wang, K.Y. 2012. Effects of climate change on the evapotranspiration and water availability in the boreal forests located in Southern Finland: an ecosystem model based approach. Ecohydrology, 6, 51–63.
54.Ge, Z.M.*, Zhou, X., Kellomaki, S., Wang, K.Y., Peltola, H., Martikainen, P.J. 2012. Seasonal physiological responses and biomass growth in a bioenergy crop (Phalaris arundinacea L.) under elevated temperature and CO2, subjected to different water regimes in boreal conditions. BioEnergy Research, 5, 637–648.
55.Ge, Z.M.*, Zhou, X., Kellomaki, S., Zhang, C., Peltola, H., Martikainen, P.J. 2012. Acclimation of photosynthesis in a boreal grass (Phalaris arundinacea L.) under different temperature, CO2 and soil water regimes. Photosynthetica, 50,141–151.
56.Zhou, X., Ge, Z.M., Kellomaki, S., Wang, K.Y., Peltola, H., Martikainen, P.J. 2012. Multi-objective environment chamber system for studying plant responses to climate change. Photosynthetica, 50, 24–34.
57.Ge, Z.M.*, Kellomaki, S., Zhou, X., Wang, K.Y., Peltola, H. 2011. Evaluation of carbon exchange in a boreal coniferous stand over a 10-year period: an integrated analysis based on ecosystem model simulations and eddy covariance measurements. Agricultural and Forest Meteorology, 151, 191–203.
58.Ge, Z.M.*, Kellomaki, S., Peltola, H., Zhou, X., Wang, K.Y. 2011. Impacts of changing climate on the productivity of Norway spruce dominant mix-stands with Scots pine and birch in relation to the water availability in southern and northern Finland. Tree Physiology, 31, 323–338.(Cover story)
59.Ge, Z.M.*, Zhou, X., Kellomaki, S., Peltola, H., Wang, K.Y. 2011. Climate, canopy conductance and leaf area development controls on evapotranspiration and its components in a boreal coniferous stand over a 10 year period: a united assessment based on hydrological model with forest growth model. Ecological Modelling, 222, 1626–1638.
60.Ge, Z.M.*, Kellomaki, S., Peltola, H., Zhou, X., Wang, K.Y. 2011. Effects of varying thinning regimes on carbon uptake, total stem wood growth, and timber production in Norway spruce (Picea abies) stands in southern Finland under the changing climate. Annals of Forest Science, 68, 371–383.
61.Ge, Z.M.*, Zhou, X., Kellomaki, S., Wang, K.Y., Peltola, H., Martikainen, P.J. 2011. Responses of leaf photosynthesis, pigments and chlorophyll fluorescence within canopy position in a boreal grass (Phalaris arundinacea L.) to elevated temperature and CO2 under varying water regimes. Photosynthetica, 49, 172–184.
62.Ge, Z.M.*, Zhou, X., Kellomaki, S., Wang, K.Y., Peltola, H. 2010. Effects of changing climate on water and nitrogen availability with implications on the productivity of Norway spruce stands in southern Finland. Ecological Modelling, 221, 1731–1743.
63.Ge, Z.M.*, Zhou, X., et al. 2009. The effects of changes in vegetation cover on the migratory shorebird carrying capacity of a newly-formed wetland, Yangtze River Estuary, China. Zoological studies 48, 769–779.
64.Ge, Z.M., Wang, T., et al. 2007. Changes in the spatial distribution of migratory shorebirds along the Shanghai shoreline, China, between 1984 and 2004. Emu 107, 19–27.
65.Ge, Z.M., Wang, T., et al. 2006. Use of wetlands at the mouth of the Yangtze River by shorebirds during spring and fall migration. Journal of Field Ornithology 77, 347–356.
66.Zhou, X., Ge, Z.M., Kellomaki, S., Wang, K.Y., Peltola, H., Shurpali, N., Martikainen, P.J. 2011. Effects of elevated CO2 and temperature on leaf characteristics, photosynthesis and carbon storage in aboveground biomass of a boreal bioenergy crop (Phalaris arundinacea L.) under varying water regimes. Global Change Biology Bioenergy, 3, 223–234.
67.Ge, Z.M.*, Zhou, X., Shi, W.Y., et al. 2008. Carrying capacity for shorebirds during migratory seasons at the Jiuduansha Wetland, Yangtze River Estuary, China. Frontiers of Biology in China 3: 536–542.
68.Ge, Z.M.*, Zhou, X., Shi, W.Y., et al. 2006. Seasonal change and ha Carrying capacity for shorebirds during migratory seasons at the Jiuduansha Wetland, Yangtze River Estuary, China.bitat selection of shorebird community at the South Yangtze River Mouth and North Hangzhou Bay, China. Acta Ecologica Sinica (Elsevier V.) 26: 40–47.
69.Ge, Z.M., Wang, T.H., Shi, W.Y., et al., 2005. Impacts of environmental factors on the avian community in Shanghai woodlots in spring. Zoological Research‚ 26(1): 17-24. (In English)
70.赵 伟, 李 宇, 张 玮, 朱科桦, 周 珂, 吕 晴, 刘诗娴, 葛振鸣*. 可降解材料生物降解率的检测方法比较. 华东师范大学学报(自然科学版), 6, 158-167.
71.李 宇, 葛振鸣*. 七种不同成分消毒剂对MS2 噬菌体杀灭效果的比较. 华东师范大学学报(自然科学版), 2, 161-167.
72.解丽娜, 李亚雷, 李诗华, 谭立山, 葛振鸣*. 2020. 本土和外来湿地植物土壤微生物生物量对水、盐胁迫的响应. 生态科学, 39(6): 181–190.
73.费蓓莉, 解丽娜, 李诗华, 陈 威, 葛振鸣*. 2019. 长江口滨海湿地植物群落潮沟水体有机碳动态及其影响因素. 华东师范大学学报(自然科学版), 1, 156–165.
74.李诗华, 解丽娜, 陈 威, 费蓓莉, 袁 琳, 葛振鸣*. 2019. 升温及淹水条件下土著与外来盐沼植物的生长和光合特征比较. 华东师范大学学报(自然科学版), 1, 144–155.
75.刘紫玟, 魏雪馨, 许运凯, 葛振鸣, 王东启. 2018. 盐度对长江河口芦苇湿地甲烷排放的影响. 海洋环境科学, 37(3): 356–261, 388.
76.陈怀璞, 张天雨, 葛振鸣, 张利权. 2017. 崇明东滩盐沼湿地土壤碳氮储量分布特征. 生态与农村环境学报, 33(3): 242–251.
77.胡忠健, 马 强, 曹浩冰, 张秩通, 汤臣栋, 张利权, 葛振鸣*. 2016. 长江口滨海湿地原生海三棱藨草种群恢复的实验研究. 生态科学, 35(5): 1–7.
78.张天雨, 葛振鸣, 张利权, 严 格, 陈怀璞. 2015. 崇明东滩湿地植被类型和沉积特征对土壤碳、氮分布的影响. 环境科学学报, 35(3): 836–843.
79.严 格, 葛振鸣, 张利权. 2014. 崇明东滩湿地不同盐沼植物群落土壤碳储量分布. 应用生态学报, 25(1): 85–91.
80.曹浩斌, 葛振鸣, 张利权. 2014. 崇明东滩盐沼植被扩散格局及其形成机制研究. 生态学报, 34(14): 3944–3952.
81.崔利芳, 王 宁, 葛振鸣, 张利权. 2014. 海平面上升影响下长江口滨海湿地脆弱性评价. 应用生态学报, 25(2): 553–561.
82.李莎莎, 孟宪伟, 葛振鸣, 张利权. 2014. 海平面上升影响下广西钦州湾红树林脆弱性评价. 生态学报, 34(10): 2702–2711.
83.葛振鸣*, 周 晓, 王开运, Seppo Kellomaki. 2010. 长江河口典型湿地碳库动态研究方法. 生态学报, 30(4): 1097–1108.
84.葛振鸣*, 周 晓, 王小明, 等. 2006. 基于GIS的上海世博会游人分布和流动预测分析. 城市环境与城市生态, 19(6): 26–28.
85.葛振鸣*, 周 晓, 王开运, 等. 2009. 受损湖泊湿地生态修复规划与效益分析—以上海西郊湿地为例. 生态经济, 4: 30–36.
86.葛振鸣*, 周 晓, 肖 风, 等. 2008. 生态型港口综合评价指标体系初探—以上海港为例. 长江流域资源与环境, 3: 339–345.
87.葛振鸣, 王天厚, 施文彧, 等. 2005. 崇明东滩围垦堤内植被快速次生演替特征. 应用生态学报, 16(9): 1677–1681.
88.葛振鸣, 周 晓, 施文彧, 等. 2007. 九段沙湿地鸻形目鸟类迁徙季节环境容纳量. 生态学报, 27(1): 90-96.
89.葛振鸣, 王天厚, 施文彧, 周 晓. 2006. 长江口杭州湾鸻形目鸟类群落季节变化和生境选择. 生态学报, 26(1): 40-47.
90.葛振鸣, 王天厚, 周 晓 等. 2006. 上海崇明东滩堤内次生人工湿地鸟类冬春季生境选择的因子分析. 动物学研究, 27(2): 144-150.
91.施文彧, 葛振鸣, 周 晓, 等. 2007. 九段沙湿地植被群落演替与格局变化趋势. 生态学杂志, 26(2): 165–170.
92.周 晓, 葛振鸣, 施文彧, 等. 2006. 长江口九段沙湿地大型底栖动物群落结构的季节变化规律. 应用生态学报, 17(11): 2079-2083.
93.周 晓, 王天厚, 葛振鸣, 等. 2006. 长江口九段沙湿地不同生境中大型底栖动物群落结构特征分析. 生物多样性, 14(2): 165-171.
94.周 晓, 葛振鸣, 施文彧, 等. 2007. 长江口新生湿地大型底栖动物群落时空变化格局. 生态学杂志, 26(3): 372-377.
95.桑莉莉, 葛振鸣, 裴恩乐, 等. 2008. 崇明东滩人工湿地越冬水禽行为观察. 生态学杂志, 27(6): 940-945.
96.姜 姗, 葛振鸣, 裴恩乐, 等. 2007. 崇明东滩堤内次生人工湿地冬季水鸟的夜间行为. 动物学杂志, 42(6): 21-27
97.徐骁俊, 葛振鸣, 裴恩乐, 等. 2007. 上海世界博览会园区内及周边地区鸟类多样性及其影响因子. 生态学杂志, 26(12): 1954-1958.
98.周立晨, 施文彧, 薛文杰, 王天厚, 葛振鸣, 等. 2005. 上海园林绿地植被结构与温湿度关系浅析. 生态学杂志, 24(9): 1102-1105.
99.周 慧, 仲阳康, 赵 平, 葛振鸣, 等. 2005. 崇明东滩冬季水鸟生态位分析. 动物学杂志, 40(1): 59-65.
100.赵 平, 葛振鸣, 王天厚, 等. 2005. 上海崇明东滩芦苇的生态特征及其演替过程的分析. 华东师范大学学报 (自然科学版), 3: 98-102.