冯志轩

职称: 
研究员
研究专长: 
生态系统模型开发和应用、海洋观测和模型技术融合
Email: 
zxfeng@sklec.ecnu.edu.cn
联系电话: 
+86 (021) 54836472
联系地址: 
上海市闵行区东川路500号华东师范大学河口海岸大楼A305
学术任职: 
伍兹霍尔海洋研究所生物系 长期客座研究员(Guest Investigator)
编委任职: 
Frontiers in Marine Science 客座副主编(Guest Associate Editor in Physical Oceanography)
教育经历: 
美国迈阿密大学(University of Miami) 应用海洋物理学博士 (2009-2014)
美国路易斯安那州立大学(LSU) 海洋学与海岸科学硕士 (2007-2009)
南京大学 地理科学学士 (2003-2007)
工作经历: 
华东师范大学 河口海岸学国家重点实验室 研究员 (2019年9月至今)
美国伍兹霍尔海洋研究所 客座研究员 (2019年9月至今)
海外工作和访学经历: 
美国伍兹霍尔海洋研究所 访问研究员 (2019年8月)
美国伍兹霍尔海洋研究所 博士后 (2014年8月-2019年7月)
个人简介: 

主要从事物理海洋学、生物海洋学以及海洋生态系统动力学方向上的交叉学科研究,运用数值模型、数据分析和野外观测相结合的手段,研究全球变化背景下的河口和近海环境演变和极地海洋生态系统演变。2025年拟招收研究生2名,常年招聘博士后,欢迎有海洋、大气、地理、港工和数理等专业背景的学生与我联系。

指导硕士研究生:
杨美晴   (2020级物理海洋学专业)
林起屹南 (2020级物理海洋学专业)
王雪 (2022级物理海洋学专业)
指导博士研究生:
王媛琪   (2021级硕博连读)
 
科研项目: 

主持项目
(5)国家自然科学基金委员会,面上项目,42176225,海冰减退对北冰洋桡足类浮游动物生物地理分布的影响,2022-01-01 至 2025-12-31,总经费70.5万元,在研,主持
(4)科技部重点研发计划政府间国际科技创新合作重点专项,楚科奇海台底栖生物食物来源与生物泵的耦合/非耦合;2020年12-01至2023年11-31,课题经费63万元(总经费252万元),课题负责人(项目主持单位是自然资源部第二海洋研究所,负责人是金海燕研究员)
(3)上海市浦江人才计划项目,北极快速变化对北冰洋浮游植物初级生产力和藻华物
候的影响,2020年11月至2022年10月,30万元定额资助,结题,主持
(2)上海市“科技创新行动计划”自然科学基金项目,基于地球系统模式的北冰洋初级生产力演变研究;2020年7月至2023年6月,20万元定额资助,结题,主持
(1)美国科学基金会(NSF)极地项目办公室(Office of Polar Program),北极太平洋扇区底栖生物热点区域的形成与维持机制研究 (Formation and persistence of benthic biological hotspots in the Pacific Arctic),2016年8月至2020年7月,伍兹霍尔海洋研究所获取经费约55万美元,共同主持(co-PI)

参与项目
(4)国家自然科学基金委员会,专项项目,42349903,共享航次计划2023年度长江口科学考察实验研究(航次编号:NORC2024-03),2024-01-01 至 2025-12-31,300万元,在研, 骨干参与
(3)国家自然科学基金委员会,专项项目,42249903,共享航次计划2022年度长江口科学考察实验研究暨长江口锋面结构演变及其对陆海条件变异响应研究(航次编号:NORC2023-03+NORC2023-302),2023-01-01 至2024-12-31,400万元,在研,骨干参与
(2)上海市教委,科研创新计划重大项目,202101070008E00102, “河口-陆架-大洋“耦合的海洋动力学机制和环境生态效应,2021-01-01 至 2025-12-31,300万元,在研,骨干参与
(1)上海市科委,基础研究领域项目,21JC1402500,河口海岸中降尺度的模拟和优化的关键数学问题,2021-10-01 至 2023-09-31,300万元,结题,参与

课程教学: 
2020年春季学期:海洋数值计算方法(吴辉、冯志轩)
2020年春季学期:近海动力学(吴辉、冯志轩)
2021年春季学期:海洋数值计算方法(吴辉、冯志轩)
2023年春季学期:海洋数值计算方法(冯志轩)
2024年春季,溯古论今:海洋探索与人类文明(张继才、冯志轩、汪亚平)
学术论文: 

英文SCI期刊
(26)Xu, M., Wang, Y.*, Feng, Z., and Wu, H. 2024. Rapid variations of phytoplankton blooms and their dynamics off the Changjiang River Estuary. Frontiers in Marine Science, 11: 1–21.
(25)Tang, B., Zhang, F.*, Jia, J., Feng, Z., Tang, J., Xing, F., and Wang, Y. P.* 2023. The Role of Tropical Cyclone on Changjiang River Subaqueous Delta Geomorphology: A Numerical Investigation of Tropical Cyclone Danas (2019). Journal of Geophysical Research: Oceans, 128: 1–20.
(24)Kim, D., Ji, R., Feng, Z., Jang, J., Lee, D., Chan, W., and Kang, C.* 2023. Estuarine dam water discharge enhances summertime primary productivity near the southwestern Korean coast. Marine Pollution Bulletin, 191: 114971.
(23)Wang, Y., Xu, M., Feng, Z.*, Zhang, F., Cao, F., and Wu, H.* 2023. Tidal Variability of Phytoplankton Distribution in the Highly Turbid Changjiang River Estuary: Mechanisms and Implications. Journal of Geophysical Research: Oceans, 128: 1–24.
(22)Liu, J., Li, P.*, Tu, C., Wang, H., Zhou, Z., Feng, Z., Shen, F., et al. 2022. Spatiotemporal Change Detection of Coastal Wetlands Using Multi-Band SAR Coherence and Synergetic Classification. Remote Sensing, 14: 2610.
(21)Xi, J., Wang, Y., Feng, Z., Liu, Y., and Guo, X. 2022. Variability and Intensity of the Sea Surface Temperature Front Associated with the Kuroshio Extension. Frontiers in Marine Science, 9: 1–15.
(20)Suca, J. J.*, Ji, R., Baumann, H., Pham, K., Silva, T. L., Wiley, D. N., Feng, Z., et al. 2022. Larval transport pathways from three prominent sand lance habitats in the Gulf of Maine. Fisheries Oceanography, 31: 333–352.
(19)Kim, D., Ji, R., Park, H. J., Feng, Z., Jang, J., Lee, C. l, Kang, Y.-H., et al. 2021. Impact of Shifting Subpolar Front on Phytoplankton Dynamics in the Western Margin of East/Japan Sea. Frontiers in Marine Science, 8: 1–17.
(18)Zang, Z., Ji, R., Feng, Z., Chen, C., Li, S., and Davis, C. S. 2021. Spatially varying phytoplankton seasonality on the Northwest Atlantic Shelf: a model-based assessment of patterns, drivers, and implications. ICES Journal of Marine Science, 78: 1920–1934.
(17)Song, H., Ji, R., Jin, M., Li, Y., Feng, Z., Varpe, Ø., and Davis, C. S. 2021. Strong and regionally distinct links between ice‐retreat timing and phytoplankton production in the Arctic Ocean. Limnology and Oceanography, 66: 2498–2508.
(16)Feng, Z., Ji, R., Ashjian, C., Zhang, J., Campbell, R., and Grebmeier, J. M. 2021. Benthic hotspots on the northern Bering and Chukchi continental shelf: Spatial variability in production regimes and environmental drivers. Progress in Oceanography, 191: 102497.
(15)Ashjian, C. J.*, Pickart, R. S., Campbell, R. G., Feng, Z., Gelfman, C., Alatalo, P., and Zhang, J. 2021. Springtime renewal of zooplankton populations in the Chukchi Sea. Progress in Oceanography, 197: 102635.
(14)Kelly, E. A., Feng, Z., Gidley, M. L., Sinigalliano, C. D., Kumar, N., Donahue, A. G., Reniers, A. J. H. M., et al. 2018. Effect of beach management policies on recreational water quality. Journal of Environmental Management, 212: 266–277.
(13)Kvile, K. Ø.*, Ashjian, C., Feng, Z., Zhang, J., and Ji, R. 2018. Pushing the limit: Resilience of an Arctic copepod to environmental fluctuations. Global Change Biology, 24: 5426–5439.
(12)Feng, Z.*, Ji, R., Ashjian, C., Campbell, R., and Zhang, J. 2018. Biogeographic responses of the copepod Calanus glacialis to a changing Arctic marine environment. Global Change Biology, 24: e159–e170.
(11)Donahue, A., Feng, Z., Kelly, E., Reniers, A., and Solo-Gabriele, H. M.* 2017. Significance of beach geomorphology on fecal indicator bacteria levels. Marine Pollution Bulletin, 121: 160–167.
(10)Ji, R.*, Feng, Z., Jones, B. T., Thompson, C., Chen, C., Record, N. R., and Runge, J. A. 2017. Coastal amplification of supply and transport (CAST): a new hypothesis about the persistence of Calanus finmarchicus in the Gulf of Maine. ICES Journal of Marine Science, 74: 1865–1874.
(9)Elliott, S. M.*, Ashjian, C. J., Feng, Z., Jones, B., Chen, C., and Zhang, Y. 2017. Physical control of the distributions of a key Arctic copepod in the Northeast Chukchi Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 144: 37–51.
(8)Feng, Z.*, Ji, R., Campbell, R. G., Ashjian, C. J., and Zhang, J. 2016. Early ice retreat and ocean warming may induce copepod biogeographic boundary shifts in the Arctic Ocean. Journal of Geophysical Research: Oceans, 121: 6137–6158.
(7)Feng, Z.*, Reniers, A., Haus, B. K., Solo-Gabriele, H. M., and Kelly, E. A. 2016. Wave energy level and geographic setting correlate with Florida beach water quality. Marine Pollution Bulletin, 104: 54–60.
(6)Feng, Z.*, Reniers, A., Haus, B. K., Solo-Gabriele, H. M., Wang, J. D., and Fleming, L. E. 2015. A predictive model for microbial counts on beaches where intertidal sand is the primary source. Marine Pollution Bulletin, 94: 37–47.
(5)Phillips, M. C., Feng, Z., Vogel, L. J., Reniers, A. J. H. M., Haus, B. K., Enns, A. A., Zhang, Y., et al. 2014. Microbial release from seeded beach sediments during wave conditions. Marine Pollution Bulletin, 79: 114–122.
(4)Hernandez, R. J., Hernandez, Y., Jimenez, N. H., Piggot, A. M., Klaus, J. S., Feng, Z., Reniers, A., et al. 2014. Effects of full-scale beach renovation on fecal indicator levels in shoreline sand and water. Water research, 48: 579–591.
(3)Feng, Z., Reniers, A., Haus, B. K., and Solo-Gabriele, H. M. 2013. Modeling sediment-related enterococci loading, transport, and inactivation at an embayed nonpoint source beach. Water Resources Research, 49: 693–712.
(2)Fiorentino, L. A., Olascoaga, M. J., Reniers, A., Feng, Z., Beron-Vera, F. J., and MacMahan, J. H. 2012. Using Lagrangian Coherent Structures to understand coastal water quality. Continental Shelf Research, 47: 145–149.
(1)Feng, Z.*, and Li, C. 2010. Cold-front-induced flushing of the Louisiana Bays. Journal of Marine Systems, 82: 252–264.

中文核心期刊
(2)杨美晴, 冯志轩*, 宋洪军. 2023. 基于 CMIP6 模式分析北极典型海区浮游植物藻华模拟误差. 海洋学报, 45: 40–55.
(1) 冯志轩*, 罗贤, 高抒. 2007. 江山盐城自然保护区核心区环境动态的遥感分析. 海洋通报, 26: 68–74.

获奖情况: 
入选2020年度上海市浦江(A类)人才计划