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Impact of tropical cyclones and
socioeconomic exposure on flood risk
distribution in the Mekong Basin

Check for updates

Aifang Chen1,2, Yadu Pokhrel 3, Deliang Chen 4,5, Hao Huang2, Zhijun Dai 6, Bin He 7, Jie Wang8,
Jiaye Li1, Hong Wang2 & Junguo Liu 9,10

Tropical cyclones have a big impact on flood risk, and understanding how their activity interacts with
population exposure under climate change is critical. Here we investigate spatiotemporal changes in
flood risk using numerical models together with historical observations and future projections of
tropical cyclone tracks.We find that tropical cyclone-related flood risk shifts from theMekongDelta to
the eastern lower Mekong Basin, driven by the interaction between tropical cyclones and population
exposure. Historically, extreme precipitation from tropical cyclones increased flood risk in about 14%
and decreased in 7% of the basin. Future tropical cyclones may increase flood risk in about 7% and
reduce in nearly 18% of the basin. Moreover, population exposure growth has historically increased
flood risk in 3% of the basin and is projected to result in a 1% increase. These findings highlight the
complex interactions of tropical cyclone hazards and socioeconomic factors influencing flood risk.

Tropical cyclones (TCs) are a leading cause of extreme floods due to the
associated heavy precipitation they bring upon landfall1–3. Numerous stu-
dies have investigated the impact of TCs on flood hazards across various
scales, revealing increasing trends linked to the intensification of TCs in the
recent past and predicted future4–6. These studies primarily focus on theTC-
induced flood hazards associatedwith extreme precipitation, discharge, and
storm surges7–10. However, the joint influence of TCs and socioeconomic
dynamics on flood inundation risk, which is themost direct consequence of
floods leading to loss of human life and financial damages, remains
elusive11–14.

The rapid pace of socioeconomic development has significantly
reshaped exposure to flood hazards and is considered a driving factor of
flood risk worldwide15–18. Studies quantifying socioeconomic exposure and
climate change often emphasize the increasing risk trends driven by the
accumulation of hazards and exposure19–21. However, considerable spatial
disparities exist in this risk due to the pronounced heterogeneity in the
occurrence of natural hazards and the rates and levels of socioeconomic
changes from migration and urbanization11,22. In regions experiencing

declining trends in natural hazard occurrence, such as the decreasing TC
frequency in the southwestern Western North Pacific23, the prevailing fac-
tors of natural hazard risk may be obscured by the coarse resolution of
analysis, overlooking the scale and distribution of risks at a local level20,24.
Thus, quantifying the impact of changes in TC precipitation-induced flood
inundation (TCPinund) and societal development on TC flood inundation
risk is challenging and crucial, particularly in light of the changing climate.
This understanding will also facilitate the implementation of targeted
mitigation measures to enhance societal resilience17,25.

The Lancang–Mekong River Basin (LMRB) is prone to TCs and has
experienced a distinct spatial pattern of changing TC activity between its
northern and southern regions (Fig. 1) due to northwestward-shifting TC
tracks in theWestern North Pacific26–28. It is likely to facemore intense TCs
under current predicted patterns of climate change29,30. Furthermore, the
LMRB continues to be a flood risk hotspot and is expected to encounter
heightenedflood risks in the future, potentially leading to significant adverse
socioeconomic impacts31–33.Moreover, the changing regional demographics
and emerging economy necessitate an enhanced understanding of
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TCPinund formore effective regionalflood riskmanagement2,19–21,34.Hence,
it is imperative that we investigate the roles of changing TC activity and
socioeconomic factors in past flood risk and estimate potential changes
under future climate change.

This study addresses the following questions: (1) How is climate
change altering the spatiotemporal dynamics of TCPinund in the LMRB?
(2) What roles do TC activity and population exposure play in TCPinund
risk? These questions are examined by employing the variable infiltration
capacity (VIC) hydrological model35 and the catchment-based macro-scale
floodplain (CaMa-Flood) model36 (hereafter referred to as the VIC-CaMa-
Flood model). These models were used to simulate the daily flood inun-
dation of TCs for the historical period 1967–2014, and projected future
changes for the period 2027–2050 in the LMRB. TC tracks were obtained
from the widely used observations of the latest available International Best
Track Archive for Climate Stewardship (IBTrACS)37 and modeling output
of the TRACKalgorithm from theCoupledModel Intercomparison Project
Phase 6 High-Resolution Model Intercomparison Project (CMIP6 High-
ResMIP) under high emission forcing38. The VIC-CaMa-Flood model
enables a physical processes-based investigation of precipitation- and non-
TC precipitation-induced flood inundations over the LMRB domain, with
satisfactory accuracy in simulating each inundation (see Supplementary
Figs. 1 and 2), thus providing a significant advance in understanding
changes in TCPinund.

To investigate changes in extreme TCPinund in the historical and
future periods, we estimated the return period of TCPinund for 1967–1990,
1991–2014, and2027–2050basedon the extremevalue statisticalmodel (see
Methods)39 at the grid scale. Aswe had only 24-year samples in each period,
we estimated the 25-year return period of TCPinund in the historical per-
iods (1967–1990 and 1991–2014) and the projection period (2027–2050)
(abbreviated as TCPinund25RLobs67‒90, TCPinund25RLobs91‒14, and
TCPinund25RLmod27‒50, respectively). Furthermore, we employed the

newly developed high-resolution global human settlement layer (GHSL
R2023a) datasets on population density to assist in quantifying population
exposure to TCPinund24, thereby estimating flood inundation risk for the
historical period (again split into 1967–1990 and 1991–2014) and the
projection period (1991–2014 and 2027–2050) (abbreviated as
FloodRIobs67‒90, FloodRIobs91‒14, FloodRImod91‒14, and FloodRImod27‒50,
respectively). Finally, we examined the relative contributions of TCPinund
andpopulation exposure toflood inundation risk in eachperiod.Our results
showed that flood risk increased in significant parts of the basin from 1967
to2014,while it is projected tobe reduced in theMekongDeltabut increased
in the lower eastern basin, influenced by changes in TC activity and
population exposure.

Results
Changes in TC precipitation (TCP)
Primarily determined by the spatial pattern of TC tracks40, annual daily
extreme TCP during the historical period (1967–2014) and future projec-
tion period (2027–2050) significantly impacted most of the LMRB with
pronounced “precipitation centers” located in the lower eastern portion of
the basin (Fig. 2). Additionally, patterns of extreme TCP changed between
the different periods studied. Compared with the period 1967–1990
(observation-based datasets, Fig. 2d), extreme TCP during 1991–2014
decreasedwithin the “precipitation centers”of the lower easternareas (south
of 18° N). In contrast, the upper basin (north of 18° N) experienced an
increase in extreme TCP. In the future projection for 2027–2050 (Fig. 2e),
extreme TCP is expected to decrease in the lower eastern areas’ “pre-
cipitation centers.”Meanwhile, TCP in the central part of the upper basin is
expected to decline, with small areas potentially experiencing increases
compared to the period of 1991–2014. Additionally, the spatial pattern of
TCP changes exhibited similarity to the annual TC occurrence (Supple-
mentary Fig. 3). Thus, our results indicate declining trends in TCP in the

Fig. 1 | Location of tropical cyclone tracks and the Lancang–Mekong River Basin.
Data sources: elevation data are from the Shuttle Radar Topographic Mission
(SRTM) 90m Digital Elevation Model (DEM) database. The Lancang–Mekong
River and watershed data are from the HydroSHEDS database. Twelve

mainstream Lancang–Mekong River Basin stations are marked from upstream to
downstream: Chiang Sean (CS), Luang Prabang (LP), Vientiane (VT), Nakhon
Phanom (NP), Mukdahan (MD), Pakse (PK), Stung Treng (ST), Kompong Cham
(KC), Neak Luong (NL), Tan Chau (TCh), My Thuan (MT), Can Tho (CT).
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lower eastern parts of the LMRB during both historical and future periods,
likely linked to changes in TC occurrence.

Changes in the 25-year return period of TCPinund
The spatial patterns of the mean annual extreme TCPinund showed similar
patterns to those of extreme TCP (Supplementary Fig. 4). The “precipitation
centers” in the lower eastern basin experienced high inundation during
historical periods, while other areas experienced low inundation (Fig. 3a, b).
Relative to TCPinund25RLobs67‒90, there was a substantial decrease in
TCPinund25RLobs91‒14 in the lower western basin. However, increases were
observed in the upper and lower eastern basins (Fig. 3c). The Mekong Delta
exhibited a mixed pattern of increases and decreases in TCPinund25RLobs,
indicating a potentially divergent spatial flood pattern driven by TC activity
in recent decades. Future projections of TCPinund25RLmod indicate that the
central-eastern basin would face a higher risk of inundation (Fig. 3d, e).
Compared with TCPinund25RLmod91‒14, the relative change in
TCPinund25RLmod27‒50 suggests that the lower portion of the basin (south of
18° N) would experience a future increase in TCPinund, with the exception
of the Mekong Delta (Fig. 3f). This is mostly consistent with the projected
change in extreme TCP, inundation, and TC occurrence (Fig. 2, Supple-
mentary Figs. 3 and 4). Meanwhile, the upper portion of the basin (north of
18° N) is projected to experience a decrease in inundation in the near future.

Changes in FloodRI
High FloodRI values were observed in most areas during the historical
period (Fig. 4a–c), mirroring the spatial distributions of
TCPinund25RLobs (Fig. 3a–c). A comparison of the FloodRIobs between
the two historical periods (1991–2014 minus 1967–1990) indicated an

overall increased risk in the upper portion of the basin, the lower eastern
basin, and parts of the Mekong Delta. Meanwhile, the lower western
basin and most of the Mekong Delta exhibited a decreased risk. Changes
in river tributaries exhibited a complex mixture of FloodRIobs with
scattered positive and negative changes, especially in the lower western
basin (Thailand). Compared with FloodRImod91‒14, the future projection
of FloodRImod27‒50 depicted larger areas with reduced risk, while
increased risk was prevalent in the lower eastern basin (Fig. 4d–f). Such a
projection of future FloodRImod is spatially consistent with the decreasing
TCPinund25RLmod projection for 2030, except in the lower western basin
and Mekong Delta. In summary, changes in FloodRI exhibited a regional
shift of high risk from the Mekong Delta to the lower eastern part of the
Mekong Basin in the future. Besides, the FloodRI presents more complex
spatial patterns compared with those of TCPinund, suggesting a socio-
economic role in reshaping flood inundation risk17,18,41.

Furthermore, sub-national spatial distributionsof population exposure
showed distinct patterns, with high-risk concentration observed in specific
provinces. Specifically, expressed proportionally, provinces near the
Mekong Delta saw >40% of their provincial population exposed to TCPi-
nund25RL > 0.5m (representing moderate-to-high risk) (Fig. 5a, b). For
moderate risk (TCPinund25RL of 0.5‒1m, abbreviated as TCPi-
nund25RLmR), population exposure reduced during 1991–2014 compared
to 1967–1990. However, high-risk (TCPinund25RL > 1m, abbreviated as
TCPinund25RLhR) population exposure was more concentrated in pro-
vinces of the Mekong Delta (Fig. 5d, e). Meanwhile, comparisons showed a
larger number of provinces with high risk than themoderate risk from 1967
to 2014. Exposure changes projected for 2027–2050 are expected to
exacerbatemoderate risk in the central and lower eastern basin andMekong

Fig. 2 | Spatial patterns of mean annual daily extreme tropical cyclone pre-
cipitation (TCP) and their difference between 1967–1990, 1991–2014, and
2027–2050. a, bMean annual daily extreme TCP calculated using IBTrACS
observation-based datasets in the historical periods 1967–1990 (TCPobs67‒90) and
1991–2014 (TCPobs91‒14), respectively. cMean annual daily extreme TCP calculated

using HighResMIPmodel-based datasets in the future projection period 2027–2050
(TCPmod27‒50). d Difference between TCPobs91‒14 and TCPobs67‒90. e Difference
between TCPmod27‒50 and the mean annual daily extreme TCP calculated using
HighResMIP model-based datasets in the period 1991–2014 (TCPmod91‒14).
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Fig. 3 | Spatial patterns of the 25-year return period of TCPinund (TCPi-
nund25RL) and their difference between the historical and projected study
periods. TCPinund25RL calculated from IBTrACS observation-based datasets
(TCPinund25RLobs) for the periods a 1967–1990 (TCPinund25RLobs67‒90) and
b 1991–2014 (TCPinund25RLobs91‒14), along with c the relative change between the

two periods. TCPinund25RL calculated from theHighResMIPmodel-based datasets
(TCPinund25RLmod) for the periods d 1991–2014 (TCPinund25RLmod91‒14) and
e 2027–2050 (TCPinund25RLmod27‒50), along with f the relative change between the
two periods. All data are presented at a 5 km resolution for visualization.

Fig. 4 | Spatial patterns of the FloodRI and their difference between the historical
and projected study periods. FloodRI calculated from IBTrACS observation-based
datasets (FloodRIobs) during the periods a 1967–1990 (FloodRIobs67‒90) and
b 1991–2014 (FloodRIobs91‒14), along with c the relative change between the two

periods. FloodRI calculated from HighResMIP model-based datasets (FloodRImod)
during the periods d 1991–2014 (FloodRImod91‒14) and e 2027–2050 (FloodRImod27‒50),
along with f the relative change between the two periods. All data are presented at a 5 km
resolution for visualization.
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Delta. Furthermore, future projections generally indicate an aggravation of
high-risk exposure across the basin. Overall, increases in TC-associated
flood risk are projected to occur in provinces with high exposure (Fig. 5c, f,
and Supplementary Fig. 5).

In addition, the list of the top ten sub-national administrative regions
with the highest proportion of their population exposed to TCPinund25RL
risk reveals provinces with notably elevated flood exposure, predominantly
in Cambodia and Vietnam (Supplementary Table 1). From the past to the
future, PhnomPenh inCambodia remainedat the topof high risk, andVinh
Long in Vietnam continued to rank at the top of moderate risk. Regarding
the absolute exposed population, the list showed a slightly different picture
(SupplementaryTable 2). Regionswith substantial TCPinund25RLhRflood
exposure were mainly located in Vietnam, Cambodia, and China. Specifi-
cally, provincially, in the historical period, An Giang and Ho Chi Minh in
Vietnam had the highest exposure to moderate and high risk, respectively.
However, Ho Chi Minh and Phnom Penh are predicted to experience the
highest risks in the future.Thesefindings implied that provinces at the topof
the lists (located proximately to the Mekong Delta) are focal points of TC-
induced flood inundation risk in the LMRB.

Contributions of population exposure and TCPinund25RL to
FloodRI
The relative contributions of exposure andnatural hazardshave revealed the
driving factors behind the spatially divergent FloodRI (Fig. 6a, b). For the

entire LMRB domain, TCPinund25RLobs led to increases in FloodRIobs in
13.5% of the basin and decreases in 7.4% of the basin between 1991–2014
and 1967–1990 (Fig. 6e).When examining the upper and lower parts of the
basin (with the dividing line at 18° N) separately, TCPinund25RLobs caused
increases inFloodRIobs inmore than10%of both sub-basins.However, it led
to largerdecreases inFloodRIobs in the lowerbasin (10.3%) than in theupper
basin (2.5%), indicating a significant role for reducedTCPinund in lowering
flood risk in the lower basin (Supplementary Fig. 6).Meanwhile, population
exposure influenced FloodRIobs across the entire domain (see Supplemen-
tary Fig. 5), resulting in an increase in FloodRIobs in 3% of the domain and a
decrease in 0.7%of the domain. At the sub-basin scale, population exposure
led to increased FloodRIobs in 2.7% of the upper and 3.2% of the lower
basins. It had a lesser impact on decreasing FloodRIobs, leading to decreases
of 0.4% and 0.9% in the upper and lower basins, respectively. However,
future changes in FloodRImod are projected to be dominated by changes in
TCPinundmod (Fig. 6b and Supplementary Fig. 6). Overall, results indicate
that FloodRImod will decrease in most parts of the basin in the future,
wherein TCPinund25RLmodwould contribute to increases in FloodRImod in
6.9% of the domain but decreases in FloodRImod in 18.1% of the domain.
Despite this, the lower eastern basin and certain parts of the Mekong Delta
will likely encounter increases in FloodRImod, dominated by increases in
TCPinund. In addition, while the positive contribution of population
exposure to FloodRI might shrink in the proportion of the domain to 1%,
this could be attributed to population migration and more spatially

Fig. 5 | Sub-national regional maps showing spatial patterns of the proportion of
the population exposed to the risk of TCPinund25RL during 1967–2050.
TCPinund25RL a–c moderate risk (TCPinund25RLmR) and d–f high risk
(TCPinund25RLhR). Population exposure to a, b moderate and d, e high risk of
TCPinund25RL was calculated using the IBTrACS observation-based datasets
during a, d 1967–1990 and b, e 1991–2014. c Relative change in exposure to
TCPinund25RLmR of the HighResMIP model-based datasets between 1991 and

2014 and 2027–2050. f Relative change in exposure to TCPinund25RLhR of the
HighResMIPmodel-based datasets between 1991–2014 and 2027–2050. Parts a and
d are based on the population of 1990 exposed to TCPinund25RL risk during the
period 1967–1990; parts b and e are based on the population of 2015 exposed to
TCPinund25RL risk during 1991–2014; and parts c and f represent the potential
change in the proportion of the population of 2030 exposed to TCPinund25RL risk
during 2027–2050.
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aggregated urbanization, e.g., in Phnom Penh, Can Tho, and Ho Chi Minh
City. Population exposure would also increase flood risk in the Mekong
Delta (Fig. 6c, d). In conclusion, changes in FloodRI have been and will
continue to be jointly influenced by natural hazards and exposure, with our
findings indicating the reduced impact of TC activity on future flood
inundation risk.

Discussion
Impacts of TCs on flooding
Multiple factors can drive changes in flood risk. Numerous previous studies
have investigated the risk associatedwithnatural hazards31,42,43. The effects of
population exposure to floods, sea-level rise, and other natural hazards have
been previously estimated16,17,44. This study focuses on the changes in
occurrence and population exposure to catastrophic TCs in the LMRB since
the 1960s. By employing theVIC-CaMa-Floodhydrological‒hydrodynamic

model, we assessed TC-associated flood inundation risk against the back-
drop of shifting TC tracks in theWesternNorth Pacific45. Our results reveal
that the spatially heterogeneous TC-induced flood inundation risk is linked
to both the occurrence of hazards and population exposure. The extreme
levels of TCPinund increased in the upper basin but decreased in the lower
basin during 1991–2014 compared to 1967‒1990. Meanwhile, future pro-
jections suggest a decrease in TC-induced flood inundation risk during the
period 2027–2050 across significant portions of the basin, with TC-induced
flood inundationhazards contributing to thedeclines inFloodRI in 10.5%of
the upper basin and in 22.6% of the lower basin.

The activity of TCs is influenced by natural variability and global
warming46,47. Although future projections of the number of TCs are
inconsistent48,49, a northwestward shift of the TC track could result in a
consistent reduction in the number of TCs hitting the LMRB. Our results
showed a future decline in TC occurrence and extreme TCP in the lower

Fig. 6 | Spatial patterns of the relative contributions of the 25-year return period
of TCPinund (TCPinund25RL) and population exposure to changes in the flood
inundation risk index (FloodRI) in the LMRB during the periods 1967–1990,
1991–2014, and 2027–2050. Relative contributions to FloodRI calculated using
IBTrACS observations (FloodRIobs) during the historical periods 1967–1990 and
1991–2014 at 5 km resolution (a) and the zoom-in of Mekong Delta region at 1 km

resolution for visualization (c). Relative contributions to FloodRI calculated using
HighResMIP modeling (FloodRImod) during the future periods 1991–2014 and
2027–2050 at 5 km resolution (b) and the zoom-in of Mekong Delta region at 1 km
resolution for visualization (d). Statistical representation of the dominant propor-
tional areas during the present and future periods (e).
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part of the basin (Fig. 2, Supplementary Fig. 3). However, this does not
ensure a reduced flood risk in this region due to significant societal devel-
opment. Areas undergoing population growth would generally experience
an increase in TC-induced flood inundation risk, especially in flood-prone
mega-cities experiencing rapid population growth. Overall, our findings
indicate a regional shift of higher risk from the Mekong Delta to the lower
eastern part of theMekong Basin, driven by reduced TC tracks in the future
compared to historical periods. Nevertheless, the Mekong Delta remains
at risk.

Impacts of population exposure
Spatially disaggregating flood exposure highlights the most prevalent risks
in the Mekong Delta within the LMRB. Despite a decrease in
TCPinund25RLobs, FloodRIobs increased between 1967 and 2014, attributed
to population exposure21,50. Areas of increased FloodRIobs, driven by
population migration, were mainly observed in rapidly urbanizing major
cities, leading to a more spatially aggregated pattern16,51. In addition to this
positive contribution, population migration negatively affects FloodRI,
particularly in river tributaries. Specifically, the concentration of population
exposure due to urbanization creates a socioeconomic pattern concentrated
in a few administrative centers, resulting in a scattered distribution of both
positive and negative FloodRIobs. By 2030, as population exposure becomes
more concentrated, it may reduce exposure in regions where people have
moved out. However, it will also exacerbate exposure to TCPinund risk,
especially in the TC flood-prone Mekong Delta.

Focusing solely on absolute exposure headcounts overlooks provinces
with smaller populations but considerable relative exposure20. Our result of
sub-national exposure estimates presents different perspectives between
absolute and relative terms (SupplementaryTables1 and2). Someprovinces
rank highly for population exposure in both absolute and relative terms,
including Ho Chi Minh and Vinh Long in Vietnam and Phnom Penh in
Cambodia, indicating high flood risks. Our results reveal increased
anthropogenic pressures near rivers and coastal areas regarding flood risk52.
As projected, the human population concentrated in low-elevation coastal
zones (<10m above sea level) globally will exceed one billion by 206044,53.
Future socioeconomic growthmay continue to elevate FloodRI, exacerbated
by potential compound impacts of sea-level rise44,54 and land subsidence55,56.

Existing studies generally highlight the contrast between economic
flood exposure in developed countries and population flood exposure in
developing countries11,20. Here, we reveal population exposure risk occur-
ring concurrently with rapid development in the LMRB, primarily con-
centrated in major cities of the Mekong Delta. Economic exposure in
developing regions may be much less than in developed areas in absolute
terms. However, such financial losses could still reverse years of progress in
development and poverty reduction57. Thus, our findings reveal a particu-
larly concerning risk situation in developing countries.

Flood protection standards are crucial for flood protection58, but these
remain inadequate in the LMRB, leading to high levels of recent flood
damage59. A continuous increase in socioeconomic exposure may result in
an exponential rise in catastrophic impacts, even for low-intensity
hazards22,60. Given that an aging population could exacerbate inequitable
regional flood risk21,50,61,62, regional development planning should consider
exposure aggregation and decentralize population and economic activities
away from flood-prone areas18,63,64.

Conclusions
We have examined regional shifts in flood risk due to TC activity and
population exposure in the TC-vulnerable LMRB using a hydrological-
hydrodynamic model, historical observations, and future projections.
Changes in TC precipitation led to increasing trends in extreme flood
inundation in the lower eastern basin and parts of the Mekong Delta from
1967 to 2014. This trend is expected to continue, except in the lowerwestern
basin during 2027–2050, due to variations in TC occurrence and extreme
TCP. A regional shift of higher risk of TC-induced flood inundation will
likely occur from the Mekong Delta to the lower eastern basin in the future

compared to the historical period. The more complex spatial patterns of
changes in the flood inundation risk index, compared to TC-induced flood
inundation, highlight the significant role of population exposure in
reshaping the risk.Nevertheless, theMekongDelta is expected to remain the
focal point of TC-related flood risk. Given the changing demographic
landscape and inadequatefloodprotectionmeasures, there is anurgentneed
for early plans to mitigate future TC risk by reducing socioeconomic
exposure.

Methods
Data sources
The best track data of TCs from 1961 to 2014 was obtained from the latest
IBTrACS version 4, which records TC tracks every three hours37. A total of
309 TCs influenced the LMRB between 1967 and 2014. Daily water level
data from 12 hydrological observation stations along the main stem of the
LMRB from 1961 to 2014 was obtained from Mohammed et al.65, Henck
et al.66, Annual Hydrological Reports of China, and the Mekong River
Commission. Gridded daily precipitation data at a spatial resolution of
0.25° × 0.25° for 1961–2014 was obtained from APHRODITE v110167,
known for its long-term and daily product for the LMRB with satisfactory
accuracy68. Other meteorological data (i.e., temperature and wind speed)
from 1961 to 2014 was obtained from CN05.169 and the Princeton Uni-
versity Global Meteorological Forcing dataset70.

For the analysis of future changes in TCs, we used TC track data from
the CMIP6 HighResMIP calculated using the TRACK algorithm. This
included historical simulation spanning 1967–2014 (highresSST-present)
and future projection covering 2027–2050 (highresSST-future) from the
CNRM-CM6-1-HRmodel, available at a spatial resolutionof 25 km38,71. The
HighResMIP offers unique opportunities for future high-resolution TC
track projection, and the 6-hour TC track from various HighResMIP
models is freely accessible from the PRIMAVERA project. Among the
available models of HighResMIP, CNRM-CM6-1-HR showed the highest
accuracy in simulating TC tracks, providing data closest to the
observations29,38,72. For the simulation of model-based inundation, we
used the TC track-associated meteorological variables (i.e., precipitation,
temperature, and wind speed) from the corresponding CMIP6 CNRM-
CM6-1-HR.

High-resolution grid population data was obtained from the open and
freely accessible GHSL R2023a. These datasets provide spatial raster data
between1975 and2020 in 5-year intervals, andprojections to 2025 and2030
derived from CIESIN GPWv4.11, with an available spatial resolution of
100m; they have a satisfactory accuracy and have been employed to
quantify population exposure in many studies18,24.

Hydrological and hydrodynamic model
We used the VIC hydrological model (v4.20 d) and the CaMa-Flood
hydrodynamic model (v3.6.2) to simulate TC-induced discharge and
inundation in the LMRB. The VICmodel is a widely used large-scale semi-
distributed hydrological model applied in various river basins globally35,73.
The CaMa-Flood model is a global river hydrodynamic model known for
explicitly parameterizing sub-grid-scale topography on floodplains36,74.
Here, the CaMa-Flood model was used to route input runoff simulated by
the VIC model and describe the floodplain inundation dynamics of the
lower LMRB. The flood depth was downscaled diagnostically to match the
500-m resolutionDigital ElevationModel (DEM). The spin-up, calibration,
and validation periods for the VIC-CaMa-Flood model were set to
1961–1966, 1967–1990, and 1992–2007, respectively. Due to the absence of
a reservoir component in theVICmodel for this study, simulationswere not
validated beyond2007. Formoredetails onmodel calibration, please refer to
Wang et al.75.

Comparisons of daily observed and simulatedwater levels showed that
the VIC-CaMa-Flood model could effectively simulate water levels at
hydrological stations fromCS to TChwith small bias and relative error, and
large Nash-Sutcliffe model efficiency coefficient (NSE) (Supplementary
Table 3 andSupplementaryFig. 1). In contrast, performancewas inadequate
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at two stations near the river estuary (MT and CT) because of the unac-
counted factors of the backwater effect of the tide and sandmining activities
since the 1990s76–78. In addition, themodel captured interannual water level
fluctuations at stations between CS and TCh exhibiting high Pearson cor-
relation coefficients (see Supplementary Fig. 2 and Supplementary Table 4).

Simulation of TCPinund
We examined the impact of TCs on flood inundation by comparing the
difference in simulation outcomes using precipitation forcings with and
without TCP influence. Daily TCP was estimated as daily precipitation
occurring within ±1 day when the TC center passed within a conventional
threshold of a 500 km radius79. Precipitation with the TCP influence was
represented by daily precipitation (P, encompassing bothTCP andnonTCP
components), thereby influencing simulated inundation by both. Con-
versely, precipitation forcing without TCP was forced solely by daily
nonTCP, obtainedbyexcludingTCP fromP, thereby simulating inundation
influenced by other precipitation systems.

In simulating TCPinund for the historical period (1967–2014), we
utilized TC track from the IBTrACS and precipitation data from APH-
RODITE (referred to as observation-based). For the simulation of TCPi-
nund using HighResMIP climate models, TC track was taken from the
HighResMIP calculated by the TRACK algorithm for both the historical
period (1967–2014) and future period (2027–2050); precipitationwas taken
from CMIP6 CNRM-CM6-1-HR (referred to as model-based).

After obtaining the flood inundations caused by P and nonTCP from
APHRODITE (abbreviated as Pinundobs and nonTCPinundobs, respec-
tively), we constructed a 48-year climatology from 1967 to 2014 for both
annual daily Pinundobs and annual maximum daily Pinundobs at each grid.
Correspondingly, we constructed a 48-year climatology of the annual daily
nonTCPinundobs and annual maximum daily nonTCPinundobs at each
grid. To simulate the TCPinund based on HighResMIP modeling, we
applied the widely adopted quantile deltamapping bias correction80,81 to the
meteorological variables from CMIP6 CNRM-CM6-1-HR, using Eq. (1‒3)
with observational meteorological forcings. Subsequently, we derived
Pinundmod and nonTCPinundmod simulated from the bias-corrected
HighResMIP for both the periods 1967–2014 and 2027–2050.

To investigate the spatiotemporal influence of TCs on flood inunda-
tion, we estimated the trends of annual maximum daily precipitation and
inundation of P, nonTCP, and TCP at the grid scale using Sen’s slope82 and
the Mann-Kendall test83. We then compared the correlation between
changes in precipitation and inundation.

dxm;r tð Þ ¼ F�1
o;r Fm;r xm;rðtÞ

� �� �
ð1Þ

Δm tð Þ ¼
xm;f ðtÞ

F�1
m;r Fm;f xm;f ðtÞ½ �
� � ðprecipitationÞ

xm;f tð Þ � F�1
m;r Fm;f xm;f tð Þ

h in o
ðother meteorological variablesÞ

8
><

>:
ð2Þ

dxm;f tð Þ ¼
F�1
o;r Fm;f xm;f ðtÞ

h in o
Δm tð ÞðprecipitationÞ

F�1
o;r Fm;f xm;f ðtÞ

h in o
þ Δm tð Þðother meteorological variablesÞ

8
><

>:
ð3Þ

where, Fo;r; Fm;r; and Fm;f are cumulative distribution functions of the daily
meteorological variables of historical observations, historical modelings,
and future projections, respectively; xm;r and xm;f are the daily meteor-
ological variables of the historical modelings and future projections,
respectively; and dxm;r tð Þ and dxm;f tð Þ are the bias-corrected daily
meteorological variables of the historical modeling and future projections,
respectively.

Estimation of TCPinund return period
We considered the spatially dependent patterns of TCPinund by
employing an extreme value statistical model per grid-cell over the
domain, which is particularly important in risk assessments84,85. We

computed the TCPinund25RL for each grid cell by constructing
empirical exceedance probability density functions for 1967–1990 and
1991–20145. As we had only 24-year samples in each period, we esti-
mated the return level of a 25-year return period, which was often
practically relevant for flood planning and risk management. The non-
parametric kernel density estimation function (Eq. (4)) was applied to
any sample of flood inundation at a specific grid39.

f̂ h f
� � ¼ 1

nh

Xn

i¼1

Kðf � f i
h

Þ ð4Þ

where, f1, f2,…, fn are annual maximum daily simulations of TCPinund
at each grid with unknown distribution; n is the sample size; K is the
kernel smoothing function set as a normal kernel smoother; and h is the
bandwidth set as 0.001 to provide sufficient detail for each kernel density
estimation.

Next, we estimated the cumulative distribution function and excee-
dance probability function and obtained the return level estimate for each
return period using a linear interpolation approach. The spatial distribution
of the TC-induced inundation risk for the periods 1967–1990 and
1991–2014 was compared by using the difference between the respective
TCPinund25RL values.

Future extreme TC-induced flood inundation with socio-
economic projections
Given that the TC activity is expected to shift poleward under the currently
predicted climate change patterns86, the southern LMRB may continue to
experience decreasing TC activity. Under this scenario, we estimated the
projected TCPinund25RL for 2027–2050. We estimated the TC-induced
flood inundations from the HighResMIP-based simulation
(TCPinund25RLmod) for the periods 1967–1990, 1991–2014, and
2027–2050 (abbreviated as TCPinund25RLmod67‒90, TCPinund25RLmod91‒

14, and TCPinund25RLmod27‒50, respectively). Before analyzing future
changes inTC-inducedflood inundations,we compared theperformanceof
TCPinund25RLmod during 1967–1990 and 1991–2014 with that of
TCPinund25RLobs. Our results showed that TCPinund25RLmod resembled
the spatial distribution of TCPinund25RLobs, but the model generally
overestimated the absolute value of inundation (Supplementary
Figs. 7 and 8). On this basis, we estimated the relative change in TC flood
inundation depth (4TCPinund25RLmod) at both grid-scale and sub-
national levels, using Eq. (5):

ΔTCPinund25RLmod ¼
TCPinund25RLmod27�50 � TCPinund25RLmod91�14

TCPinund25RLmod91�14

ð5Þ

Flood inundation risk index
Toquantify societal exposure to extremeflood inundation, we estimated the
FloodRI for the three study periods, using Eq. (6):

FloodRI ¼ ðlog10ExposureÞ×Hazard ð6Þ

where, Hazard is the TCPinund25RL (unit: m) and Exposure is the popu-
lation density within the inundation zone (unit: number of people). For
TCPinund25RL of 1967–1990, 1991–2014, and 2027–2050, we used
populationdata from1990, 2015, and 2030, respectively. In accordancewith
Zhu and Quiring5, we applied a logarithm of 10 transformations for
Exposure to rescale the population for spatial analysis. The flood inundation
risk index increases as the population density increases or TCPinund25RL
becomes larger (higher physical TC flood inundation risk). We performed
linear interpolation on the flood inundation data from 500 × 500m to
100 × 100m toalignwith the spatial resolutionof thepopulationdata before
computing FloodRI. The results were aggregated to a spatial resolution of
5 × 5 km to facilitate visualization.
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Given the heterogenous TCPinund25RL and population density at the
grid level, we applied a decomposition approach to examine the relative
contribution of population exposure andTCPinund25RL to the anomaly of
FloodRI (Eq. (7))87. The respective contributions of population and TCPi-
nund25RL were quantified as follows (Eq. (8)):

FloodRI0 ¼ ðlog10ExposureÞ×Hazard
� �0 ð7Þ

Conlog10Exposure ¼
Hazard × log10Exposure

0
�� ��

log10Exposure×Hazard
0

�� ��þ Hazard × log10Exposure
0

�� ��

ConHazard ¼
log10Exposure ×Hazard

0
�� ��

log10Exposure×Hazard
0

�� ��þ Hazard × log10Exposure
0

�� ��

8
>>><

>>>:
ð8Þ

where, Conlog10Exposure and ConHazard represent the contributions of popu-
lation exposure and TCPinund25RL, respectively; overbars and primes
indicate the mean and its deviation, respectively.

In addition, we estimated the relative future change in FloodRI
(ΔFloodRImod) by comparing the relative changes between the periods
2027–2050 and 1991–2014, both at the grid-scale and sub-national levels,
using Eq. (9):

ΔFloodRImod ¼
FloodRImod 27�50 � FloodRImod 91�14

FloodRImod91�14
ð9Þ

Exposure to significant TC-induced flood inundation risk at the
sub-national level
To support regional flood riskmanagement, we aggregated TCPinund25RL
risk results at the sub-national level, offering a more straightforward com-
parison of flood risk among sub-nations. We first defined TCPinund25RL
risk categories20, assigning grid-level TCPinund25RL risk based on the
following criteria: TCPinund25RL < 0.15m = no risk (category 1);
0.15m < TCPinund25RL < 0.5m = low risk (category 2); 0.5m < TCPi-
nund25RL < 1m=moderate risk (category 3); and TCPinund25RL > 1
m= high risk (category 4). Categories 3 and 4 represent areas with sub-
stantial TC-induced flood inundation risk. We used the category assign-
ments to calculate the population exposed at the grid level, and then
aggregated these results at the sub-national administrative level to derive
absolute population exposure values. Additionally, we computed propor-
tional population exposure by considering the total population of each sub-
national unit. With these data, we investigated the spatiotemporal patterns
of population exposure to TC-induced flood inundation risk.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The datasets presented in this study can be found in the latest International
Best Track Archive for Climate Stewardship (https://www.ncei.noaa.gov/
data/international-best-track-archive-for-climate-stewardship-ibtracs/
v04r00/access/netcdf/) and Asian Precipitation-Highly-resolved Observa-
tional Data Integration Towards Evaluation (APHRODITE, https://search.
diasjp.net/en/dataset/APHRO_MA) database. The TC tracks and asso-
ciated meteorological data for the CoupledModel Intercomparison Project
Phase 6 High-Resolution Model Intercomparison Project (CMIP6 High-
ResMIP)models are available as apart of thePRIMAVERAproject from the
Centre for Environmental Data Analysis archive (https://catalogue.ceda.ac.
uk/uuid/0b42715a7a804290afa9b7e31f5d7753).Thenewlydevelopedhigh-
resolution global human settlement layer (GHSL R2023a) datasets (https://
ghsl.jrc.ec.europa.eu/download.php?ds=pop). Elevation data come from
the SRTM 90m DEM database (https://srtm.csi.cgiar.org/srtmdata/). The
Lancang–Mekong River and watershed data are from the HydroSHEDS

database (https://data.hydrosheds.org/file/hydrosheds-v1-archive/SHP/
bas_30s_shp/as_bas_30s_beta.zip). Projected FloodRI changes by the
mid-twenty-first century, generated by this study88, are available at https://
doi.org/10.5281/zenodo.13318626.

Code availability
All analyses were performed using functions inMATLAB. The key portions
of the computer code used toprocess the results anddevelop thefigures89 are
available at https://doi.org/10.5281/zenodo.13318603.
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