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ABSTRACT

Mangrove forests play a vital role in carbon sequestration, typhoon-induced wave attenuation, and the provision
of ecological services. However, mangrove ecosystems have experienced large-scale loss globally due to rising sea
levels and anthropogenic activities. This study investigates the dynamic changes in mangrove cover within the
mega-Indus delta, the largest delta in Pakistan and Southern Asia, using multi-temporal remote sensing data and
machine learning techniques from 1988 to 2023. The results indicate an increasing trend in mangrove areas in
the Indus Delta, with an average annual growth rate of 18.72 %. The spatial distribution of mangrove forests
tends to concentrate towards the landward areas, extending along tidal channels, while losses primarily occur in
the seaward regions. Rising sea levels pose a potential threat to the survival of these mangroves. The strong
southwest monsoon-driven waves are the leading cause of shoreline erosion of the Indus Delta mangroves.
Meanwhile, the reduction in riverine sediment discharge is not associated with the increase in mangrove area.
Instead, the tidal currents influenced by the southwest monsoon carry sediments into the delta’s tidal channels,
causing them to fill and create suitable habitats for mangroves, which are the primary drivers of the observed
mangrove expansion in the Indus Delta. Additionally, afforestation activities observed in the northwest and
southwest parts of the study area have contributed to the restoration of mangroves. The loss of mangroves in the
northernmost part of the northwest region was attributed to an oil spill incident. This study highlights the dy-
namic nature of mangrove ecosystems in the Indus Delta, characterized by an arid climate and low population
density. The findings provide valuable insights into the factors influencing mangrove gain and loss and can
inform management strategies for global mangrove restoration efforts.

1. Introduction

2016; Song et al., 2023). This significant carbon storage potential makes
them crucial for mitigating climate change. However, global mangrove

Mangrove ecosystems in intertidal zones of tropical and subtropical
coastlines represent a unique transition zone between terrestrial and
marine environments (Giri et al., 2011). These ecosystems provide
essential habitats for various terrestrial and marine organisms (FAO,
2007). Mangrove forests play a crucial role in coastal protection,
effectively trapping sediment accumulation and mitigating storm surge
impacts on intertidal flats (Chaudhuri et al., 2019). They also contribute
to shoreline stability (Raju and Arockiasamy, 2022). Furthermore,
mangrove ecosystems possess a remarkable capacity for carbon
sequestration, exceeding that of many other ecosystems (Ezcurra et al.,

forests are facing significant threats due to rising sea levels and
increasing anthropogenic pressures (Ward et al.,2016; Blankespoor
et al., 2017; Goldberg et al., 2020). Over the past 30 years, the world’s
mangrove forests have decreased by 10,400 square kilometers, with an
annual loss rate of 212 km? over the past decade (FAO, 2020). There is
an urgent need to monitor dynamic changes in mangrove forests
worldwide. Such monitoring efforts can inform restoration initiatives for
damaged mangrove ecosystems and contribute to the development of
effective policies for enhanced mangrove forest protection.

Recent research has focused on the dynamic changes occurring
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within mangrove ecosystems (Bryan-Brown et al., 2020; Bunting et al.,
2023; Contessa et al., 2023). Globally, Indonesia, Malaysia, Myanmar,
Thailand, the United States, Mexico, India, Cuba, and the Philippines
have experienced the highest rates of mangrove loss (Bryan-Brown et al.,
2020). Mangrove loss has also been documented in South America,
Oceania, and Africa (Bunting et al., 2023; Contessa et al., 2023).
Conversely, some regions have shown an increase in mangrove cover
(Shapiro et al., 2015; Wang et al., 2021). Studies have observed both
landward retreat and seaward expansion of mangroves in various delta
systems. The Ganges and Mekong Deltas have shown a landward retreat
of mangroves (Besset et al., 2019; Samanta et al., 2021), although other
deltas have experienced seaward expansion (Long et al., 2021; Xiong
et al., 2024). This variability suggests that mangrove dynamics are
complex and influenced by multifaceted factors (Hagger et al., 2022).

Previous research has identified several factors contributing to
mangrove loss. High salinity soils resulting from reduced rainfall could
induce a low survival rate of mangroves (Field, 1995). Rising sea levels
have driven mangroves to retreat landward (Gilman et al., 2007), while
extreme storm events have led to widespread mangrove die-offs (Paling
et al., 2008). Insufficient sediment supply has been implicated in the
retreat of mangrove shorelines (Besset et al.,2019). However, some
studies have documented mangrove growths in inland areas far from the
coastline, particularly around tidal channels (Visschers et al.,2022).
Furthermore, Lee et al. (2022) observed that mangrove expansion can
lead to a transition in tidal channels from a wider, meandering state to a
narrower, straighter configuration.

In addition to natural factors, human activities have significantly
impacted mangrove ecosystems. Reclamation, aquaculture, and indus-
trial pollution have contributed to the decline of mangrove forests (Maiti
and Chowdhury, 2013; Richards and Friess, 2016; Slamet et al., 2020).
However, mangrove restoration and replanting projects, driven by
conservation policy implementation in some countries, have resulted in
the recovery and expansion of mangrove forests in various regions
(Ellison et al., 2020; Gerona-Daga and Salmo, 2022).

The dense, prop root structure of mangroves, coupled with their
periodically submerged muddy terrain, poses challenges for traditional
field survey methods, limiting the scope and comprehensiveness of
monitoring efforts (You et al., 2023). In recent years, advancements in
terrestrial satellite data have significantly improved the temporal ac-
curacy and spatial resolution for quantifying changes in the Earth’s
surface, including natural and anthropogenic alterations (Wulder et al.,
2019). This data has proven valuable in the study of coastlines and
various habitats (Tang et al., 2016; Zhang and Hou, 2020; Zheng et al.,
2023). Remote sensing has emerged as a powerful tool for mangrove
observation (Pham et al., 2019; Wang et al., 2019; Yang et al., 2022a).
However, challenges remain in identifying submerged mangroves dur-
ing tidal cycles and limitations in remote sensing image resolution. To
address these challenges, random forest and threshold segmentation
have been incorporated into such studies (Liu et al., 2021; Jia et al.,
2023; Zablan et al.,, 2023; Xiong et al., 2024). The continuous
improvement in mangrove datasets also holds significant promise for
global conservation and restoration of mangroves (Worthington et al.,
2020). Despite extensive studies on mangrove forest changes in various
coastal regions, limited information exists on the dynamics of man-
groves in the Indus Delta, the largest delta of Pakistan, located in
Southern Asia. The Indus Delta supports a population of approximately
300,000 residents (Karrar, 2021). The Indus Delta’s mangrove ecosys-
tems are crucial for maintaining Pakistan’s ecological and social
well-being.

This study focuses on the Indus Delta as the study area, utilizing
satellite remote sensing data from 1988 to 2023 to extract mangrove
information using deep learning methods. The objectives of this study
are to 1) quantify the temporal and spatial changes in the mangrove area
within the Indus Delta; 2) determine the erosion and accretion status of
the mangrove ecosystem; 3) explore the underlying drivers of mangrove
gain and loss. The study will shed light on the damage and activity
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dynamics of mangroves in the Southern Asian Indus Delta, which will
provide valuable insights for mangrove government departments
worldwide, facilitating mangrove restoration efforts and policy
development.

2. Materials and methods
2.1. Study area

The Indus River, originating from the Tibetan Plateau and traveling
the Himalayas and the Karakoram Range, flows through Pakistan,
Afghanistan, India, and China, before reaching the Arabian Sea. Pakistan
encompasses occupies 56 % of the Indus River Basin. The Indus Delta,
located in the Sindh province of Pakistan (Fig. 1A), exhibits a fan-shaped
morphology attributed to the extensive sediment deposition from the
upstream mountainous regions (Kalhoro et al., 2016). The Indus Delta
comprises 17 main creeks and tributaries (Amjad and Jusoff, 2007).
However, after the construction of a series of upstream hydraulic engi-
neering projects, only two active creeks remain, namely Khobar and
Khar (Siyal et al., 2022), with Khobar serving as the main channel for
Indus River outflow. The southwest monsoon contributes significant
precipitation to the delta (Inam et al., 2007).

The study area, situated in a subtropical region with an arid climate
and limited rainfall, covers an area of 6411.267 km?, extending from
Korangi Creek to Sir Creek. The two main creeks, Khobar Creek and Wari
Creek, divide the study area into three sections: the Northwest Part
(NWP), the Southwest Part (SWP), and the South Part (SP) (Fig. 1B). The
annual average rainfall is 160 mm. The nearest tide gauge station in
Karachi recorded a tidal range of 2.7 m, characterized by a mixed
semidiurnal tide with two high tides and two low tides daily (Syed and
Siddiga, 2019). Extensive branching tidal creeks dominate the northern
delta, influenced by tides, while broader channels penetrating further
inland are observed in the southeastern part. Tidal channels are densely
distributed from the northwest to the southeast, constituting a system
significantly influenced by waves and tides (Giosan et al., 2006).

As a representative arid climate delta, the Indus Delta’s formation
and evolution have been shaped by historical climate change, human
activities, and hydrological and geomorphological alterations. The delta
was initially formed during humid periods due to sediment accumula-
tion. However, the river’s input into the delta has decreased due to arid
climate conditions and large-scale irrigation projects. Since the late 19th
century, extensive engineering constructions have significantly reduced
the flow and sediment supply to the delta, leading to a developed tidal
river network and coastal erosion (Day et al., 2021). The shortage of
freshwater and insufficient sediment supply have negatively impacted
the delta’s ecological and economic sustainability, particularly affecting
the mangrove ecosystems and the fisheries (Hadi, 2019). Given the
multifaceted stressors facing the Indus Delta, studying its ecological
evolution, particularly changes in mangroves, is of paramount impor-
tance and urgency.

2.2. Materials

Google Earth Engine (GEE) provides a highly practical and efficient
platform for analyzing remote sensing data within the context of
geographic big data (Yang et al., 2022b). Specifically, GEE’s robust
computational and storage capabilities facilitate the processing of
large-scale spatial data. Additionally, its support for batch processing
using JavaScript or Python streamlines the workflow, eliminating the
need for cumbersome traditional data preprocessing and significantly
enhancing work efficiency (Teluguntla et al., 2018). This leveraged
GEE’s extensive remote sensing data archive, including Landsat 5 TM,
Landsat 8 OLI, and Landsat 9 OLI-2, to acquire multiple cloud-free im-
ages from 1988 to 2023. The study area consistently covered the same
geographic area (path 152, row 43). Image preprocessing employed the
1984 World Geodetic System (WGS 84) as the geographic coordinate
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Fig. 1. Map of the Indus Delta (A) and study area (B).

system and the WGS_1984_UTM_Zone_42N of the Universal Transverse ngrovewatch.org/) and historical imagery from Google Earth to estab-

Mercator (UTM) as the projected coordinate system. However, no lish sample points. Sediment discharge data for the Indus River entering
remote sensing images were available during 2003-2007 and 2012. the sea were obtained from remote sensing-derived estimates of sus-

To validate the accuracy of mangrove identification, this study uti- pended sediment flux into the sea (Dethier et al., 2022). Meanwhile,
lized the global mangrove watch dataset (https://www.globalma wave direction and significant height of waves (SHW) were obtained
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Fig. 2. Schematic methodological framework employed in the study.
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from the European Centre for Medium-Range Weather Forecasts
(ECMWF) (https://cds.climate.copernicus.eu/cdsapp#!/home). Sea
current field data were downloaded from Copernicus Marine Environ-
ment Monitoring Service (CMEMS)(https://data.marine.copernicus.eu
/product/GLOBAL MULTIYEAR _PHY_001_030/description).

2.3. Methods

2.3.1. Methodological framework

This study’s methodology utilizes a framework that integrates
remote sensing images on the Google Earth Engine platform with deep
learning algorithms to identify mangroves in the Indus Delta. The
methodology comprises four main steps (1) Data preparation; (2)
Extraction and Classification; (3) Data analysis; (4) Driver analysis. The
overall methodology is illustrated in Fig. 2.

2.3.2. Random forest

Machine learning has become increasingly prevalent in Earth sci-
ences, with popular classification algorithms including Support Vector
Machines (SVMs), ensemble classifiers (e.g., ensemble learning
methods), and deep learning algorithms (Sheykhmousa et al., 2020).
Each algorithm possesses unique strengths and limitations. SVMs excel
in handling high-dimensional data with relatively small sample sizes but
require significant computational resources. Ensemble learning methods
enhance accuracy and robustness by combining multiple models,
reducing overfitting but demanding substantial computational resources
and fine-tuning. Deep learning algorithms excel in processing complex,
nonlinear relationships in image data but require extensive data and
computational resources and offer limited interpretability.

The Random Forest method has gained prominence in Earth science
research due to its high accuracy, robustness, and computational effi-
ciency. Several studies have demonstrated its effectiveness in mangrove
identification compared to other classification algorithms (Poortinga
et al., 2020; Habibullah et al., 2023). Random Forest, an ensemble
learning method, constructs multiple decision trees and aggregates their
results through voting, leading to excellent overall performance
(Fernandez-Delgado et al., 2014). It is less prone to overfitting with
high-dimensional data and effectively handles imbalanced samples.
Additionally, Random Forest provides feature importance evaluation,
aiding researchers in understanding the model’s decision-making pro-
cess and classification results (Belgiu and Dragut, 2016).

This study utilizes the Random Forest method for classifying and
recognizing remote sensing images, focusing on the spatiotemporal
changes of mangroves in the Indus Delta. Google Earth Engine (GEE), a
powerful geospatial analysis platform, provides extensive support for
various supervised classification algorithms, including Random Forest.
To study mangrove spatiotemporal changes, preprocessed satellite im-
ages were used, and training points were manually created in GEE, la-
beling different land cover types. The "Random Points" command
generated random points, with approximately 70% used for training the
Random Forest classifier and the remaining 30% for evaluating its ac-
curacy in identifying mangroves. This approach enables efficient pro-
cessing of large-scale remote sensing data and provides insights into the
importance of various variables during classification, offering valuable
scientific data support for mangrove conservation and management.

2.3.3. Mangrove shoreline analysis

To analyze the spatial distribution of mangrove gains and losses, this
study employed ArcGIS software’s Analysis Tools, specifically the Erase
option within the Overlay tool. By erasing the previous year’s layer with
the subsequent year’s layer, the output reveals new layers that indicate
the increase in mangroves during that period. Conversely, the result
shows the loss of mangroves.

Mangrove shoreline is a key indicator for assessing coastal changes.
This study employed the Digital Shoreline Analysis System (DSAS) to
evaluate the edge changes of mangroves over several years. DSAS tools
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are widely recognized for their effectiveness in assessing coastline
changes (Rahman et al., 2022). Mangrove shorelines were extracted for
the years 1988, 1993, 1998, 2002, 2008, 2013, 2018, and 2023. The
Digital Shoreline Analysis System, developed by the United States
Geological Survey (USGS), operates within the ArcGIS software. DSAS
supports the analysis and processing of various statistical indicators,
including Linear Regression Rate (LRR) and Endpoint Rate (EPR)
(Thieler et al., 2009).

2.3.4. Landscape pattern

Quantitative landscape pattern analysis plays a crucial role in un-
derstanding the ecological processes within a landscape (Simova and
Gdulova, 2012). This study employed Patch Density (PD) and Cohesion
Index (COHESION) to measure the landscape pattern characteristics of
mangroves in the study area. Fragstats software, a powerful tool for
landscape pattern analysis, was used to calculate these indicators. Patch
Density (PD) serves as an indicator of landscape fragmentation and
heterogeneity. Within a given landscape area, a higher patch density
indicates landscape dispersion, while a lower patch density indicates
landscape aggregation. The Cohesion Index (COHESION) measures the
aggregation of landscape distribution, revealing whether patches are
connected. The formulas for both indicators are as follows (McGarigal
et al., 2002):

PD :g(IOOOO)(IOO) €))
3 P; 11!
COHESION = |1-—-=1—| o [1 - _} (100) (2)
EP,‘ a; \/N
i=1

Where, N: total number of patches of the selected patch type landscape,
A: total area of the landscape, i: 1, ..., n patches, ai: the area of patch i,
Pi: the perimeter of patch i.

2.4. Computational Environment and Resource Allocation

Google Earth Engine (GEE) (https://earthengine.google.com) is a
cloud-based platform for Earth science data and analysis. GEE has a
built-in random forest classification algorithm, which can be accessed
using the ee.Classifier.smileRandomForest function to extract man-
groves in the study area. This allows users to perform data processing
and classification directly on the platform, ensuring data consistency
and integrity. The scripts for GEE are primarily written in JavaScript. We
wrote and executed scripts in the GEE Code Editor to process remote
sensing images, train classification models, and conduct time series
analyses. In this study, the latest version of Google Chrome browser was
used to ensure compatibility with the GEE platform and optimal per-
formance. All data processing and analysis were carried out within the
Google Earth Engine’s cloud computing environment. Although the GEE
platform is cloud-based, with computation tasks executed by Google’s
servers, the local computing environment still has a certain impact on
the smooth progress of the research. We maintain at least 50 GB of
available storage space locally to save scripts and processed data files
temporarily. Through this cloud computing architecture, we were able
to efficiently handle large-scale data and obtain analysis results in a
relatively short time.

3. Results
3.1. Variations in mangrove forest area
The mangrove forest area showed an increasing trend, expanding

from 433.22 km? in 1988-838.63 km? in 2023, indicating a net growth
of 405.41 km? (Fig. 3). Initially, the mangrove forest coverage was
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Fig. 3. Variation of mangrove forest area within the Indus Delta from 1988
to 2023.

433.22 km? in 1988, which increased to 500.97 km? in 1993, reflecting
an annual growth rate of 2.95 %. However, a slight decrease was
observed from 500.97 km? in 1993-491.96 km® in 1998. From
1998-2002, the mangrove forest area experienced an increment of
25.60 km?, with an annual growth rate of 1.28 %. Subsequent years
demonstrated relatively stable growth rates: 3.79 % from 2002 to 2008,
0.97 % from 2008 to 2013, 1.18 % from 2013 to 2018, and 3.09 % from
2018 to 2023, respectively (Fig. 3).

Moreover, the spatial analysis revealed distinct variations in the
mangrove area within the Indus Delta (Fig. 4). In the northwest part
(Fig. 4A), the area of mangroves increased from 330.23 km? in
1988-574.84 km? in 2023. This growth was characterized by a rapid
expansion from 1988 to 2002, followed by a gradual stabilization from
2008 to 2023, transitioning into a steady growth phase. Conversely, in
the southwest region (Fig. 4B), the area of mangroves expanded also
showed from 21.78 km® in 1988-160.19 km® in 2023. Unlike the
northwest part, the southwest region experienced an initial phase of
steady growth, followed by a rapid expansion phase. In contrast, the
south part (Fig. 4C) demonstrated a continuous in mangrove area
throughout the study period.

3.2. Gain and loss in mangrove forest area

From 1988-2023, the mangrove forest area in the study region
exhibited an overall increasing trend, with a net expansion of
499.60 km? and a reduction of 94.19 km? (Fig. 5). During the period
from 1988 to 1993, the spatial distribution of the mangrove forest area
exhibited net gains, with. an increase of 123.53 km? and a loss of
55.78 km?. The gains were predominantly concentrated in the north-
west and the southern parts, while minor losses were observed in certain
coastal areas. From 1993-1998, losses were mainly concentrated in the
southwest part of the mangrove forests established in 1993. Despite

600 T T T /T T T T
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these losses, the regions experiencing growth remained consistent with
the 1988-1993 period, indicating that the spatial dynamics of the
mangrove forests were still relatively unstable, though growth areas
became more focused. From 1998-2002, a noticeable trend of mangrove
loss towards the sea was observed, with an area increase of 101.12 km?
and a loss of 75.52 km?. These seaward losses were particularly evident
in the southwest and southern parts.

Subsequently, the spatial expansion of mangrove areas continued to
progress, albeit at varying rates. From 2002-2008, the mangrove area
increased by 191.57 km? and decreased by 62.20 km?, with overall
growth dominating. Notably, the growth extended inland along tidal
channels, particularly in the southwest part. From 2008-2018, the rate
of mangrove area expansion slowed: from 2008 to 2013, the area
increased by 81.45 km? with a loss of 49.29 km?, and from 2013 to
2018, the area increased by 95.98 km? with a loss of 54.82 km?. During
this period, the original mangroves remained stable, and their distri-
bution continued to expand along tidal channels. From 2018-2023, the
mangrove area increased by 166.69 km? and lost 48.30 km?, resulting in
the current distribution pattern. Overall, from 1988 to 2023, the dis-
tribution of mangroves became more concentrated, with changes in
spatial distribution primarily occurring in the southwest and southern
parts of the study area. The increases in mangrove area mainly occurred
inland, extending upwards along tidal channels, while losses predomi-
nantly occurred towards the sea.

3.3. Shoreline change in mangrove forest

Shoreline changes in the mangrove forests were analyzed for the
years 1988, 1993, 1998, 2002, 2008, 2013, 2018, and 2023, resulting in
the generation of 1095 transects (Fig. 6). Positive change rates of the
shoreline indicate accretion of the mangrove forest edge, while negative
change rates indicate erosion. The average total migration rate from
1988 to 2023 was —4.7 m/yr. Analysis revealed 592 transects showing
erosion and 503 indicating accretion. The proportion of erosion to ac-
cretion sections was 54.06-45.94 %, with average change rates of
—28.12 m/yr and 22.85 m/yr, respectively. Moreover, the erosion and
accretion of the mangrove forest shoreline alternated, with the most
pronounced erosion observed in the southwest and south coastal areas.
Overall, despite some seaward expansion of the mangrove forest
shoreline, the general trend indicates erosion, demonstrating a net
retreat towards the land.

It is worth noting that the change rates varied across different re-
gions. The northwest part of the study area, situated on the right bank of
the Indus River, experienced the least erosion. In contrast, the southwest
and south parts, located on the left bank, exhibited higher erosion rates.
The southwest area, in particular, faced the most severe erosion, with a
rate of 35.42 m/ yr, followed by the south region, while the northwest
part experienced the least erosion (Fig. 7).
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Fig. 5. Spatial distribution of gains and losses of mangrove forest area within the Indus Delta from 1998 to 2023. A-H: Spatial distribution of mangrove forests at
different periods during 1988-2023.
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3.4. Landscape pattern change in mangrove forest

Landscape pattern indices were employed to reveal the vegetation
distribution characteristics of the region, with each indicator providing
unique insights. Patch density (PD), which is directly proportional to the
degree of spatial fragmentation of the landscape, serves as a proxy for
human-induced disturbances to the landscape (Nrothwest, 1995). From
1988-2023, the patch density of the Indus Delta exhibited a decreasing
trend, declining from 1.31 in 1988-0.88 in 2023 (Fig. 8A). This decrease
indicates a trend toward the concentration of mangroves over the study
period, consistent with the spatial distribution of mangroves from 1988
to 2023. The aggregation index (COHESION) showed a linear increase
from 99.63 in 1988-99.73 in 2023 (Fig. 8B), signifying an enhancement
in the overall interconnectedness of mangroves.

4. Discussion
4.1. Impacts of suspended sediment discharge from upstream

The long-term viability of mangrove ecosystems is intrinsically
linked to the availability of sediment (Spalding et al., 2014). However,

anthropogenic hydraulic interventions have significantly disrupted
mangrove connectivity and impeded the supply of essential sediment
and nutrients (Anthony and Goichot, 2020). Following Pakistan and
India signing the Indus Waters Treaty in 1960, extensive west-to-east
hydraulic projects, including the construction of reservoirs and dams
on the upper Indus River, were initiated. Since the operation of the
Tarbela Dam in 1976, the average river flow of the Indus River has
decreased to merely 2.9 % of its pre-dam levels (Ahmad and Center,
2012). This substantial reduction in river flow has critically impaired
sediment transport to estuarine areas, contributing to the observed
decline in mangrove coverage from 1988 to 2023. This trend is illus-
trated by the retreat of the mangrove shoreline on the seaward side
(Fig. 6), underscoring the reduction in upstream sediment transport as a
primary causative factor.

Inadequate sediment supply exacerbates the erosion of muddy sub-
strates, causing shoreline retreat. When sediment deficits surpass critical
thresholds, the dynamic equilibrium of mangrove coastlines is dis-
rupted, posing a significant threat to the sustainability of these
mangrove ecosystems (Ellison, 2021). Between 1988 and 2023, a
decreasing trend in suspended sediment discharge from the upper rea-
ches of the Indus River was observed (Fig. 9 A), whereas the overall area
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of mangroves has increased. A negative correlation between the area of
Indus River mangroves and the suspended sediment discharge (Fig. 9B)
indicates that the reduction in upstream sediment delivery has not
directly led to a decrease in the downstream delta mangrove area.
Therefore, other factors affecting mangrove area changes in the Indus
River delta warrant consideration.

4.2. Impacts of the local hydrological conditions

Analysis of wave direction diagrams for the northwest, southwest,
and southern parts of the study area (Fig. 10) reveals a predominance of
southwestward waves. In the southwest, 58.73 % of the southwestward
waves exceed a significant wave height of 1 m, with some waves over
4m (Fig. 10), likely driving the extensive seaward mangrove loss
observed. The erosion rates in the southwest and south regions, at
—35.42 m/yr and —32.60 m/yr, respectively (Fig. 7), are particularly
pronounced due to persistent southwest wave action. This wave-induced
scarp formation is evident along the mangrove shorelines in these re-
gions (Fig. 11).

Despite the reduction in sediment transport to the delta estuary,
mangrove areas have continued to expand, likely due to tidal actions
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resuspending sediments (Reynaud and Dalrymple, 2012). Tidal currents,
flowing southeast as observed in multi-year average sea surface current
maps from 1993 to 2023 (Fig. 12), facilitate sediment deposition and
compensate for upstream sediment deficiencies. The left bank of the
Indus, the delta’s southwest and south parts (Fig. 1B), is most affected by
tidal currents throughout the year. During summer, the southwest
monsoon further enhances inland tidal flow, bringing sediments into
tidal channels at flow rates up to 0.25 m/s. This sediment transportation
process by tidal current can induce the filling of tidal channels and
create a suitable habitat for mangroves along tidal channels (Woodroffe,
1992). Tidal currents and wave action jointly influence sediment dis-
tribution and transport pathways in the study area. Strong wave action
suspends sediment, increasing the concentration of suspended sediment,
which tidal currents then transport inland. The interaction fosters
mangrove growth, as evidenced by the expansion of mangroves occu-
pying the tidal channel waters, causing the tidal channel shrinkage
(Fig. 13).

Mangrove growth along tidal creeks in the northwest, southwest, and
southern parts of the study area, has been observed from 1988 to 2023
(Fig. 13). Extensive tidal flats and dynamic tidal changes have promoted
the formation and evolution of tidal channels. From 1988-1998, man-
groves in the three regions began to show sporadic or small-scale
landward expansion, with the northwest being the most notable area
for this expansion. During high tides, water pushes upstream, leading to
sediment deposition on tidal flats due to the slower flow velocity. This
deposition during high tides, combined with erosion during low tides,
has deepened channels and promoted tidal channel extension in the
northwest (Fig. 13A1). From 1998-2008, the tidal channels in the
northwest began to connect (Fig. 13A2), while those in the southwest
and south narrowed (Fig. 13B2, 13C2), promoting the landward
expansion of the mangroves. The northwest mangroves began to show
block-like aggregation, and the southwest clearly showed strip-like
extension along the tidal channels (Figs. 5C, 5D). From 2008-2023,
the tidal creek waters in the northwest continued to expand, further
connecting tidal channels and stabilizing mangrove growth (Fig. 13A3-
A5). Concurrently, mangroves in the southwest and southern regions
continued to grow along these tidal channels (Fig. 13B3-B5; Fig. 13 C3-
C5). The mangrove expansion in the three regions tended to stabilize,
with most areas transitioning into long-term stable mangroves (Fig. 5E-
G). Overall, as the tidal channels in the northwest gradually connect
(Fig. 13D), the upstream flow of the tide brings saline water that impacts
the mudflats, transforming them into tidal flats. Avicennia marina,
constituting 95 % of the mangrove species in the Indus Delta (Mukhtar
and Hannan, 2012), uses its unique salt glands to expel salt through
osmosis, maintaining the osmotic pressure balance and enabling
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survival in high-salinity environments (Liang et al., 2008). Additionally,
the aerenchyma in the pneumatophores of mangrove plants ensures
their survival during tidal submersion (Srikanth et al., 2016), resulting
in the aggregation of mangrove patches along the tidal channels in the
northwest (Fig. 5H), as evidenced by the linear growth in the aggrega-
tion index from 1988 to 2023 (Fig. 8B). The changes in the tidal channels
in the southwest and south differ from those in the northwest.
Cross-sectional analysis from 1988 to 2023 revealed that the width of
the southwest cross-section (Transect B) decreased from 344 m in 1988
to 0 m in 2023, while the southern cross-section (Transect C) decreased
from 176 m to 29 m. Over this period, the tidal channels in the south-
west and south gradually narrowed, with some channels completely
closing (Figs. 13B, 13C). This continuous closure of the tidal channels
facilitated the extension of mangrove roots and the growth of mangrove
seedlings, further stabilizing these ecosystems.

Sea level rise, accelerating coastal submergence and prompting
landward mangrove migration, further influences mangrove dynamics
(Gilman et al., 2008; Ellison, 2012). Among Pakistan’s existing tide
gauge stations, the Karachi tide gauge station possesses the longest time
series of observational data, recording both tidal and sea level data
(Weeks et al., 2023). According to sea level data from the Permanent
Service for Mean Sea Level, the trend of sea level rise in Pakistan is
2.01 mm/yr, indicating that Pakistan is facing the threat of rising sea
levels. In the southwest and south parts of the Indus Delta, seaward

erosion may be attributed to this rising sea level.

4.3. Impacts of anthropogenic activities

The Red River Delta and the Irrawaddy Delta in Southeast Asia are
primarily influenced by monsoon climates. In contrast, the Indus Delta is
affected by a subtropical desert climate and hosts the world’s largest arid
mangrove ecosystems, predominantly composed of Avicennia marina
(Irfan Aziz and Khan, 2000). Resource scarcity in these deltas has driven
the migration of approximately 90,000 individuals, and seawater
intrusion has resulted in the disappearance of about 120 villages
(Memon, 2005). The limited availability of habitable land implies that
human activities have a relatively minor direct impact on the arid
mangroves of the Indus Delta (Adame et al., 2021).

A significant anthropogenic threat to mangroves in the Indus Delta is
the large-scale discharge of oil. Mangroves, as part of tidal wetlands, are
particularly susceptible to extensive and prolonged oil spills (Duke,
2016). Mangroves affected by oil spills are deprived of essential oxygen,
leading to widespread mortality (Kairo et al., 2005). The Korangi Creek
area of the delta and the nearby Karachi Port have suffered from severe
marine oil pollution, with approximately 20,000 tons of oil contami-
nating Pakistan’s coastal areas annually. The sources of this pollution
include ship leaks and bilge cleaning operations (Saifullah, 1997). While
oil pollution affects various areas of the delta, Korangi Creek, situated at
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Fig. 11. Steep escarpments formed by wave action in the Indus Delta. (A) Source: WWF-Pakistan 2012. (B) Source: Google Earth.

Fig. 12. Seasonal variation in tidal current along the Indus Delta. (A) Spring. (B) Summer. (C) Autumn. (D) Winter.
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Fig. 13. Patterns of landward expansion of mangroves in the three regions from 1988 to 2023. (A) Northwest Part. (B) Southwest Part. (C) South Part. (D) Extension
connections of tidal channels in the Northwest Part with transects B and C.
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the delta’s northernmost point (Fig. 1B), exhibits significant mangrove
loss at its northwestern tip (Fig. 5H), making it the most significantly
affected area by oil spill-induced mangrove degradation.

In response to these challenges, Pakistan began mangrove plantation
activities in coastal areas in 2006, coupled with enhanced community
outreach and eco-tourism efforts to protect mangroves in the delta
(Saeed et al., 2019). The extensive mudflats of the Indus Delta provide
suitable sites for mangrove restoration, with notable mangrove planta-
tions established in the northwest and southwest areas of Keti Bunder
and Shah Bunder (Masood et al., 2015). Both areas have shown positive
outcomes since the onset of these mangrove planting activities in 2006.
The planned mangrove forests have become increasingly concentrated
and have gradually spread (Fig. 14). Photographic evidence from fixed
points in Keti Bunder taken in May 2010 and May 2012 further supports
this trend (Fig. 15). This reforestation effort likely accounts for the
relative increase in mangrove area in the northwest and southwest since
2008.

4.4. Comparison with other regions

In the Indo-Pacific region, the imbalance between the rate of sea-
level rise and surface elevation growth poses a significant threat to the
sustainable growth of mangroves. In areas without anthropogenic bar-
riers, mangroves can migrate inland to mitigate submersion rates
(Lovelock et al., 2015). Similar landward retreats of mangrove shore-
lines have been observed in the Mekong Delta of Southeast Asia and the
Ganges Delta of South Asia (Besset et al., 2019; Samanta et al., 2021).
The Indus Delta mirrors this phenomenon, particularly in its southwest
and southern regions, where sea-level rise contributes to mangrove
erosion. However, in the Indus Delta, the erosion caused by the strong
southwest waves may exceed the impact of sea-level rise.

Conversely, some studies report a trend of seaward expansion of
mangroves. For instance, Long et al. (2022) observed seaward expansion
of mangroves in the Nanliu River Delta, the largest delta in the Beibu
Gulf of China. This tide-dominated delta benefits from significant sedi-
ment deposition by tidal flows, which extends the mangrove growth
range. Similarly, the Irrawaddy River Delta in Southeast Asia exhibits
seaward expansion of mangroves, where barrier islands at the estuary
effectively protect the mangroves from the impact of strong waves
(Xiong et al., 2024). In contrast, the Indus Delta is influenced by both
waves and tidal currents. Coastal erosion dominates when wave action is
predominant, leading to mangrove shoreline retreat. However, when
tidal and wave actions are relatively strong, a synergistic "wave stirring
and tidal transport" effect occurs, where waves and tides together
transport sediment landward, thereby creating suitable habitats for
mangrove growth (Long et al., 2022). This dual influence is evident in
the Indus Delta, where sediment transport driven by the interaction of
waves and tides supports mangrove expansion in specific areas.

4.5. Uncertainty analysis

This study explores the long-term trends and spatiotemporal changes
in the mangroves of the Indus Delta using machine learning techniques
and remote sensing images. Despite the robustness of the methodology,
several uncertainties need to be addressed, including potential errors in
data sources and during the processing stages. One significant source of
uncertainty is the 30 m spatial resolution of Landsat data, which in-
troduces a pixel error of approximately 9x10~* km? However, given
the large scale of the study area, this error is effectively mitigated (Okin
and Gu, 2015). The minimum recorded area of the Indus Delta man-
groves (433.22 km?) is far greater than the pixel error, indicating that
the pixel error has a negligible impact on the overall accuracy of
mangrove area calculations. A limitation of this study is the absence of
available remote sensing images for the periods 2003-2007 and 2012.
These temporal gaps introduce discontinuities in the analysis of
mangrove change trends, thereby affecting the continuity of long-term
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trend assessments. The wave data from the European Centre for
Medium-Range Weather Forecasts (ECMWF) and the current data from
the Copernicus Marine Environment Monitoring Service (CMEMS) used
in this study have high spatial and temporal resolutions (e.g., hourly
data). While these datasets generally provide reliable insights, they may
exhibit systematic biases during anomalous climate events or extreme
environmental conditions, which could influence the study’s conclu-
sions regarding hydrodynamic influences on mangrove dynamics.
Moreover, the Random Forest algorithm is an ensemble model
composed of multiple decision trees, each of which may carry some
biases, and these biases can accumulate in the final classification results.
Therefore, we employed the Error Matrix Method (Foody, 2002) and
combined it with the validation dataset to assess the performance of the
classification model. The overall accuracy and Kappa coefficient
generated by this method can be used to demonstrate the relationship
between the model’s predictions on the test dataset and the actual
values. The evaluation of mangrove recognition accuracy mainly relies
on the overall accuracy and Kappa coefficient, both of which range
between 0 and 1. Accuracy values greater than 0.8 are considered reli-
able, while those below 0.4 indicate low accuracy (Foody, 2010). In this
study, the annual overall accuracies and Kappa coefficients consistently
exceed 0.90 and 0.80, respectively (Table 1), demonstrating high reli-
ability and accuracy in the identification results. In summary, while this
study provides a robust analysis of mangrove dynamics in the Indus
Delta, the identified uncertainties—stemming from data resolution,
temporal gaps, potential biases in wave and current data, and model
classification—should be acknowledged. These factors highlight the
need for cautious interpretation of the results and underscore the
importance of continuous methodological refinement.

5. Conclusions

As one of the largest deltas in the world and home to the most
extensive arid climate mangrove system, the Indus Delta mangroves
hold significant ecological importance. This research provides a
comprehensive temporal and spatial analysis of mangrove dynamics in
the Indus Delta from 1988 to 2023. The key findings are as follows:

1. From 1988-2023, the overall area of mangroves in the Indus Delta
exhibited a positive trend, with an average annual increase of
11.58 km?. The mangrove area in the three regions of the delta
showed different changing trends: in the northwest part, rapid
growth was observed before 2002, followed by a deceleration of
growth from 2008 to 2023. The southwest part displayed an initial
slow growth phase, succeeded by rapid growth in the latter period.
The southern part did not show a distinct trend.

2. The spatial distribution of mangroves in the delta tends to be
concentrated. Mangrove expansion predominantly occurred in the
landward areas, extending along tidal channels, while losses were
concentrated in the seaward areas. The mangrove shoreline retreated
landward at a rate of 4.7 m per year. Among the three regions, the
southwest part experienced the most severe erosion, the south part
maintained a balance between erosion and expansion, and the
northwest part experienced the least erosion.

3. The Indus Delta is subject to the combined influences of waves and
tidal currents, with the primary mechanism for nearshore sediment
transport being "wave stirring and tidal transport". Rising sea levels
and southwest waves significantly contribute to the erosion observed
in the southwest part of the study area. The southwest and south
parts of the delta are heavily affected by tidal currents throughout
the year, facilitating mangrove growth along tidal channels. In the
northwest part, the river channels extend and connect, transforming
mudflats into mangroves, whereas tidal channels in the southwest
and south parts show gradual closure, providing additional growing
space for mangroves.
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Fig. 14. Changes in mangrove plantations at Keti Bunder (A) and Shah Bunder (B) from 2006 to 2023. Source: Google Earth.
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Fig. 15. Photographs of the mangrove site in Keti Bunder taken in May 2010 (A) and May 2012 (B). Source: WWF-Pakistan 2012.

Table 1
Accuracy assessment of research area.

Year Overall accuracy Kappa coefficient value
1988 0.91 0.87
1989 0.97 0.96
1990 0.96 0.92
1991 0.98 0.97
1992 0.98 0.96
1993 0.98 0.96
1994 0.95 0.90
1995 0.95 0.90
1996 0.91 0.83
1997 0.97 0.95
1998 0.98 0.97
1999 0.92 0.86
2000 0.97 0.95
2001 0.99 0.98
2002 0.97 0.95
2008 0.90 0.85
2009 0.96 0.94
2010 0.90 0.82
2011 0.99 0.98
2013 0.96 0.92
2014 0.96 0.93
2015 0.98 0.97
2016 0.98 0.96
2017 0.98 0.97
2018 0.96 0.93
2019 0.97 0.95
2020 0.98 0.97
2021 0.98 0.97
2022 0.97 0.95
2023 0.97 0.93

Moreover, the Indus Delta, under the influence of a subtropical
desert climate, exhibits unique characteristics compared to deltas
affected by monsoon climates. It supports the world’s largest mangroves
in an arid climate. The low human habitation and land use in the delta
result in minimal direct human interference with the mangroves.
Anthropogenic impacts are primarily localized, with oil spills from ports
causing mangrove mortality and mangrove restoration efforts through
plantations contributing to their recovery. In conclusion, this study
underscores the dynamic nature of the Indus Delta mangroves and
highlights the critical role of both natural and anthropogenic factors in
shaping their temporal and spatial patterns.
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