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Abstract: Improving the inversion of ocean color data is an ever
continuing effort to increase the accuracy of derived inherent optical prop-
erties. In this paper we present a stochastic inversion algorithm to derive
inherent optical properties from ocean color, ship and space borne data.
The inversion algorithm is based on the cross-entropy method where sets
of inherent optical properties are generated and converged to the optimal
set using iterative process. The algorithm is validated against four data sets:
simulated, noisy simulated in-situ measured and satellite match-up data
sets. Statistical analysis of validation results is based on model-II regression
using five goodness-of-fit indicators; only R2 and root mean square of
error (RMSE) are mentioned hereafter. Accurate values of total absorption
coefficient are derived with R2 > 0.91 and RMSE, of log transformed data,
less than 0.55. Reliable values of the total backscattering coefficient are
also obtained with R2 > 0.7 (after removing outliers) and RMSE < 0.37.
The developed algorithm has the ability to derive reliable results from noisy
data with R2 above 0.96 for the total absorption and above 0.84 for the
backscattering coefficients.
The algorithm is self contained and easy to implement and modify to derive
the variability of chlorophyll-a absorption that may correspond to different
phytoplankton species. It gives consistently accurate results and is therefore
worth considering for ocean color global products.

© 2010 Optical Society of America

OCIS codes: (010.4450) Oceanic optics; (010.7340) Water; (100.3190) Inverse problems.
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1. Introduction

The aim of ocean color data inversion is to determine inherent optical properties of the water
upper-layer from observed remote sensing reflectance. Theoretically, inherent optical proper-
ties (IOPs) can be derived from the radiance distribution and its depth derivative [1]. Ocean
color data provide, however, the radiance at the surface in a few directions only. Therefore,
semi-analytical models were developed to facilitate the inversion of ocean color data. These
models are based on approximations that link remote sensing reflectance and the IOPs [2–6].
The general form of these models is that water remote sensing reflectance is proportional to the
backscattering coefficient and inversely proportional to the absorption coefficient. Inversion of
ocean color data using semi-analytical models has been investigated in many studies [7–12].
The scientific procedure to derive IOPs from ship/space borne ocean color data can be divided
into three steps: i- forward modeling, use a semi-analytical ocean color model; ii- parametriza-
tion, define the minimal set of IOPs whose values completely characterize the observed remote
sensing reflectance using the forward model; iii- inversion, use of ocean color observations to
infer the actual values of IOPs. While the first two steps are mainly inductive, the third step
is deductive. This paper is devoted to the third step, i.e. explain, implement and validate an
inversion method for ocean color data. It is out of the scope of this work to review the literature
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on ocean color inversion methods and compare them, one may consult [13] for more details on
this subject.

Generally, inversion of ocean color data falls under one of two methods, namely analytical
deterministic or stochastic methods. Deterministic methods are based on gradient or pseudo-
gradient techniques and have been extensively used for ocean color inversion [11, 14–16]. The
main drawback of gradient-based methods is that they do not properly handel non-convex ob-
jective functions or many local optima. On the other hand, stochastic methods are less prone to
be trapped in local optima and can deal with non-convex functions. The basic idea of stochastic
methods is to systematically partition the region of feasible solutions into smaller subregions
and move between them using random search techniques. Stochastic optimization techniques
have been recently adopted for ocean color inversion, e.g. genetic algorithms [17, 18]. Mar-
itorena et al. [11] used simulated annealing to optimizing for the parameters in their semi-
analytical ocean color model. On the other hand, Kempeneers et al. [19] employed simulated
annealing to derive ocean constituents. Swarm optimization [20] and ant colony method [21]
were also used to derive water optical constituents from remote sensing reflectance. Salama and
Stein [22] used entropy-based method to decompose and quantify the errors of derived IOPs.

There are other stochastic methods that have not been investigated yet for ocean color in-
version, e.g. threshold acceptance [23], stochastic comparison method [24], tabu search [25]
and cross-entropy [26]. Cross-entropy is one of the most significant developments in stochastic
optimization and simulation in recent years [27]. It is a stochastic iterative method that searches
for sequence of solutions which converges probabilistically to the optimal solution. The main
objective of this paper is to develop a stochastic inversion algorithm for ocean color data based
on the cross-entropy method. The performance of the algorithm and its stability to noise will
be analyzed using simulated data. Validation exercises will be carried out against ocean color
data of in-situ measurements and satellite match-up.

The reminder of this paper is organized as follow: in Section 2 we describe the ocean color
paradigm: used ocean color model and its parametrization. The principles of cross-entropy are
introduced in Section 3.1, followed by mathematical derivations for ocean color inversion in
Section 3.2. The implementation of the inversion algorithm is presented in Section 3.3. In-situ
measurements and ocean color satellite match-up data are described in Section 4 along with
the employed initial values and statistical analysis. Inversion’s performance and stability are
analyzed in Section 5, followed by extensive validation exercise with in-situ data in Section 6.
Thoroughly discussions of the developed algorithm, its results, limitations and possible exten-
sion are presented in Section 7. Main conclusions of this work are listed in Section 8.

2. Semi-analytical ocean color model

Remote sensing reflectance leaving the water surface can be related to physical and biological
properties of water constituents using the model [7]:

Rsw(λ ) =
t

n2
w

2

∑
i=1

gi

(
bb(λ )

bb(λ )+a(λ )

)i

(1)

where, Rsw(λ ) is remote sensing reflectance leaving the water surface at wavelength λ ; gi

are constants taken from [7]; t and nw are the sea−air transmission factor and water index of
refraction, respectively. Their values are taken from [7,11,28]. The parameters bb(λ ) and a(λ )
are the bulk backscattering and absorption coefficients of the water column, respectively.

Four independently-varying constituents are considered to affect the optical properties of
the water column, namely: phytoplankton green pigment i.e. chlorophyll-a (Chla), dissolved
organic matter or gelbstoff, detritus and suspended particulate matter (SPM). The bulk absorp-
tion a(λ ) and backscattering bb(λ ) coefficients are modeled as being the sum of absorption and
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backscattering effects from water constituents:

a(λ ) = aw(λ )+achla(λ )+adg(λ ) (2)

bb(λ ) = bb,w(λ )+bb,spm(λ ) (3)

where, the subscripts denote the contribution of: water (w), chlorophyll-a (chla), combined
effects of detritus and glebstoff (dg) and suspended particulate matter (spm). The absorption
and backscattering coefficients of water molecules, aw and bb,w, were obtained from [29, 30],
respectively. The total absorption of chlorophyll-a achla is approximated as [14]:

achla(λ ) = (a0(λ )+a1(λ ) lnachla(440))achla(440) (4)

where a0(λ ) and a1(λ ) are empirical coefficients. The absorption effects of detritus and gelb-
stoff are combined due to the similar spectral signature [11] and approximated using the
model [31]:

adg(λ ) = adg(440)exp [−s(λ −440)] (5)

where s is the spectral exponent. The backscattering coefficient of SPM bb,spm is parameterized
as [32]:

bb,spm(λ ) = bb,spm(550)
(

550
λ

)y

(6)

where y is the spectral shape parameter of backscattering. The scattering phase function of SPM
was assumed to follow the Petzold’s San Diego Harbor scattering phase function [33].

Derived IOPs are called the set of IOPs and expressed in a vector notation as iop [16]:

iop =
[
achla(440),adg(440),bb,spm(550),y,s

]
(7)

3. Inversion of ocean color data using the cross-entropy method

3.1. Entropy and cross-entropy

Entropy is a numerical measure of information associated with probability distribution of de-
rived IOPs or any hydrological parameter [34]. For a population with N sets of IOPs it is ex-
pressed as the Shannon entropy [35]:

H (g) = −E lng(iop) ≈−
N

∑
1

g(iop) · lng(iop) (8)

where iop is the set of derived IOPs [Eq. (7)]; E is the expectation; g(iop) is the probability
distribution function (pdf) of the IOPs. The base of the logarithm is taken as e in which case
the entropy is measured in ”nats”. Shannon’s entropy calculated by Eq. (8) is defined to be the
average amount of information contained in the IOPs. It should be noted that the entropy of
IOPs does not depend on the actual values of IOPs, but only on its distribution g(iop).

The joint-entropy between two pdfs g and f is:

H (g, f ) = −
N

∑
1

g(iop) · ln f (iop) (9)

The cross-entropy is the Kullback-Leibler distance [36] which measures the divergence be-
tween the two distribution g and f as:

D(g, f ) = −
N

∑
1

g(iop) ln
g(iop)
f (iop)

(10)
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Based on Eq. (10), the lower the expected cross-entropy, the closer is the distribution f to
g. Therefore, minimizing the cross-entropy leads to the maximal similarity between the two
distributions and vice versa. Eq. (10) can be rewritten in terms of Eqs. (8) and (9) as:

D(g, f ) = H (g, f )−H (g) (11)

where, H (g) and H (g, f ) are the entropy of g and the joint-entropy between g and f , respec-
tively.

3.2. Inversion

The unknown IOPs [Eq. (7)] can be derived by matching modeled reflectance [Eq. (1)] to ob-
served water remote sensing reflectance. The sought solution iop is the set of IOPs that produces
the best-fit spectrum to the observed spectrum, Rsw(λ ). The best-fit spectrum can be searched
by designing a performance function that measures the agreement between the observed and
modeled reflectance. This function φ(iop) is arranged so that small values represent a close
agreement, i.e. least-square:

φ(iop) =
m

∑
i=1

[Rsw(i)−Rswm(i)]2 (12)

where, m is the number of spectral bands; Rsw(i) and Rswm(i) are the observed and modeled
water remote sensing reflectance at the ith wavelength, respectively. The objective now is to
search for a set of IOPs, iop, that minimizes Eq. (12) to a very small value εmin, such:

εmin = minφ(iop) (13)

The basic idea of cross-entropy method [27,37] is to generate a family of probability distribu-
tion functions pdfs for the IOPs, f , and then converge them to an optimal pdf g. The optimal
distribution g has all of its mass concentrated around the sought solution of the inversion prob-
lems iop, i.e. the variance of the optimal pdf is zero.

We start by converting the deterministic problem in Eq. (12) to a random one. The random-
ization can be performed by computing the probability of φ(iop) as being less than a certain
value ε such:

� = P(φ(iop) � ε) (14)

Equation (14) can be associated with an estimation problem of the form [38]:

� = E f I{φ(iop)�ε} =
N

∑
i=1

I{φ(iopi)�ε} f (iopi, iop∗) (15)

where E f is the expectation with respect to the pdf f ; I{φ(iopi)�ε} is the indicator function,
i.e. indicating that φ(iopi) has values � ε; f (iopi, iop∗) are the discrete probability densities
of IOPs; iopi is a randomly generated set of IOPs from f (iopi, iop∗) using initial mean iop∗.
Equation (15) is generally called the associated stochastic problem (ASP).

In importance sampling method [39], the ASP (15) can be rewritten using the optimal density
g as:

� = EgI{φ(iop)�ε}
f (iop, iop∗)

g(iop)
(16)

The change of measure with density in Eq. (16) is [26]:

g∗(iop) =
I{φ(iop)�ε} f (iop, iop∗)

�
(17)
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The idea now is to choose the reference parameter iop∗ such that the distance between f and
g∗ is minimal. A suitable measure is the cross-entropy in Eqs. (10) and (11). The optimal pdf can
be obtained by minimizing D(g∗, f ) in Eq. (11) which is equivalent to maximizing −H (g∗, f )
in Eq. (9). Substituting Eq. (17) in (9) and maximizing it for the reference parameters iop∗ we
will have:

iop = argmax
iop∗

= E f I{φ(iop)�ε} ln f (iop, iop∗) (18)

For pdfs belonging to the natural exponent family solution of (18) can analytically be derived
as [26, 27]:

iop∗ =
∑N

i=1 I{φ(iopi)�ε}iopi

∑N
i=1 I{φ(iopi)�ε}

(19)

Equation (19) can be used as an update formula of iop∗ in our iterative procedure as described
in the next Section 3.3. Equation (19) is basically the average of IOP vectors iopi=1,...N that
produced best-fit spectra to the observed spectrum, thus φi � ε .

The proofs of Eqs. (15) to (19) are out the scope of this work. The detailed derivations of the
cross-entropy method and various applications are given in [26, 27]. Their symbols are used,
as possible, in this manuscript. De Boer et al. [40] provides an excellent tutorial on the cross-
entropy method. Its application to continuous multi-extremal optimization is given in [37] with
approachable examples. Many links to references and examples on cross-entropy method can
be found at http://www.cemethod.org.

3.3. Algorithm

Practically, the IOPs are derived using iterative procedure such that ε approaches εmin and the
probability of the solution iop approximates 1, i.e. a degenerated pdf around iop with zero
variance.

The algorithm is implemented in the following steps:

1. For the first iteration, t = 0, choose the initial values of the mean μ0 = iop∗
0 and standard

deviation σ0. Sections 4.2 and 7.6 give more details on initial values.

2. Generate IOPs vectors, iop1,...,iopN from f (iopi, iop∗), e.g. normal distribution
N(μt ,σt). Accept or reject each generated IOP depending whether its value is within
a predefined physical bounds, i.e. constraints.

3. Forward the generated IOPs vectors to spectra using Eq. (1). Keep the reference between
each IOPs set and its remote sensing reflectance.

4. Compute the performance function φ(iopi) in Eq. (12).

5. Set ε equal to the sample quantile (1−ρ), where ρ is predefined value, e.g. ∼10−2 and
evaluate the indicator function Iφ(iopi)�ε . This is simply achieved by ordering the values
of φ(iopi) and selecting the elite samples that belong to the sample quantile (1−ρ).

6. Corresponds these elite samples to their ”elite” IOPs.

7. Derive an updated value of iop∗ from Eq. (19) and compute the new value of σt+1 from
the elite sample of IOPs.

8. Forward the updated IOPs set iop∗ using Eq. (1) and evaluate the least square in Eq. (12).
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9. If ε = εmin and σt � γ , where γ is a predefined small value ∼ 10−5, terminate, otherwise
set t = t +1 and iterate from step 2 to 9. The criterion σt � γ is equivalent to �∼ 1 in Eq.
(16). This stopping criterium is adjusted for noisy data to cope with fluctuated values of
ε as follow. Keep track of the last best ten candidates which have smallest values of ε .
Iterate while the variance of these ten candidates is larger than, say 10−5.

4. Materials and analysis

4.1. Data sets

Evaluation and validation of the proposed inversion method is carried out using four data sets:
simulated, noisy-simulated, in-situ measured and ocean color match-up data sets. Simulated
data consists of radiative transfer simulations, at 30◦ sun zenith, of synthesized IOPs [28,
IOCCG data set]. IOCCG spectra were simulated assuming the solar irradiance model of Gregg
and Carder [41] and a cloud free sky. A wind speed of 5 m/s is applied, and the water body is
assumed homogeneous. Spectral bands were set from 400 nm to 720 nm, with a spacing of 10
nm. Inelastic scattering, such as Raman scattering, chlorophyll fluorescence, etc. were excluded
from the simulations. Noisy-simulated data is basically the simulated IOCCG spectra with ran-
dom noises added to them. In-situ measured data of water radiance and IOPs are taken from the
NOMAD data set, version 2.a [42, NOMAD data set]. This version of the NOMAD data set was
developed in support of the Ocean Optics XIX, IOP Algorithm Workshop (2008). Ocean color
match-up data consist of observations from the Sea Wide Field-of-view Sensor (SeaWiFS) that
were concurrent with the NOMAD data set, version 1.3 [42, SeaWiFS match-up data set]. More
details on NOMAD data sets can be found on SeaWiFS Bio-optical Archive and Storage Sys-
tem (SeaBAAS): http://seabass.gsfc.nasa.gov/seabasscgi/nomad.cgi.

4.2. Analysis

The generated IOPs are constrained to their physical bounds as described in 3.3. The constraints
are set to 10−4 and 100 m−1 for {achla(440),adg(440),bspm(550)}, and between 10−4 and 2.5
for y and between 10−4 and 0.03 nm−1 for s. The initial values of μ0 = iop are taken from
Lee et al. [14] with s = 0.011 nm−1, and briefly described in appendix (A). In case of limited
number of bands, mostly the red bands in NOMAD and SeaWiFS match-up, we used a fixed
initial value for bb as 0.025 m−1 instead of Eq. (A.3). Initial values of σ0 are set as ς μ0, where
ς is a factor varying between 2 and 10 at step 2 interval. This choice was to make the algorithm
self contained and to limit the freedom of initialization to μ0. Optimal values of σ0 are then
searched using simulated annealing method [43]. Energy function is set to Eq. (15), with the
updating in Eq. (19), and ”temperature” parameters is set to σ0. The procedure iterates through
a range of values and selects σ0 that has the minimal ε . Using simulated annealing to initialize
σ results in an algorithm with two loops, an outer loop iterating through σ0 and an inner loop,
which is basically the algorithm in (3.3). A normal distribution, N(μ,σ), is used to generate
the pdfs of IOPs. This, however, does not imply that the actual variability of IOPs follows the
normal distribution, because the variance of the final pdf is zero. The number of samples in the
generated pdfs is set to 100 and maximum number of iteration is set equal to 100.

Goodness-of-fit parameters (slope, intercept, bias and R2) between derived and known values
are computed using model-II regression [44] for log-transformed data. The slope and intercept
are for a model-II regression line between derived and known values. Perfect fit leads to unity
slope and zero intercept and bias. The intercept is computed for the derived values on the Y
axis. The values of R2 is computed as the squared correlation coefficient between derived and
known values. The bias is estimated for the log transformed data as:

bias = E(log iopknown − log iopderived) (20)
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Computing the bias as shown in Eq. (20) means that negative bias indicates overestimation
while positive bias indicates underestimation. The root mean square of error RMSE is calcu-
lated using Eq. (2.1) from [28] as:

RMSE =

[
(n−2)−1

n

∑
i

(log iopknown − log iopderived)
2

]0.5

(21)

where n is the number of data points. The fraction of valid retrieval fr is also computed during
the statistical analysis. Derived IOP is considered un-valid if its value falls outside the defined
constraints or trapped to zero solution. In our analysis we will use goodness-of-fit parame-
ters obtained from inversion of noise-free IOCCG data set as a benchmark for comparison. In
other words, we will compare goodness-of-fit parameters resulting from the inversion of noisy,
NOMAD and SeaWiFS match-up data sets to those computed from the optimal situation of
noise-free IOCCG data set.

5. Performance

5.1. IOCCG data set

Figure 1 shows derived versus known values of IOPs from the IOCCG simulated data set.
Goodness-of-fit parameters are detailed in Table 1. Derived values of Chla absorption fits the
measured values with 5% off-unity slope and positive intercept ∼0.32. The RMSE value is
below 0.35 and, in general, retrieved achla(440) values are overestimated with negative bias
-0.16 but with strong correlation to known values, R2= 0.963. The slope of derived adg(440)
deviate from unity by up to 13% with intercept ∼0.16 and RMSE ∼0.45. The adg(440) values
are underestimated, positive bias of 0.15, with high R2 ∼0.97. The over/under estimation of
respectively achla(440) and adg(440) seem to be compensated in the computed total absorption.
The slope of derived a(440) is 9% off-unity with positive intercept of 0.144. The RMSE ∼0.19
and bias ∼0.003 values are lower than that of individual absorption coefficients, i.e. achla(440)
or adg(440). The opposite could be observed for the increased R2 value up to 0.99. The best re-
sults, in term of the overall goodness-of-fit, are obtained for the backscattering coefficient with
slope deviating from unity by 2% and negative intercept ∼-0.16. RMSE value of bb,spm(550) is
the lowest among derived IOPs. The positive bias also shows that, in general, the derived values
of bb,spm(550) are underestimated with high correlation, R2 ∼0.99, to known values however.

Table 1. IOCCG: RMSE and regression (type II) goodness-of-fit parameters between de-
rived and known values of IOCCG data set. n is the number of data points.

IOPs, n = 500 fr slope intercept RMSE bias R2

achla(440) 1 1.053 0.313 0.322 -0.160 0.963
adg(440) 1 1.134 0.159 0.451 0.150 0.965
a(440) 1 1.086 0.144 0.189 0.003 0.992
bb,spm(550) 1 0.977 -0.161 0.150 0.058 0.991

5.2. Satiability to noise

The stability of the proposed inversion to sensor noise is analyzed by adding realistic values of
noise-equivalent-radiance to simulated spectra of IOCCG data set. Recently reported noise-
equivalent-radiance values of the Medium Resolution Imaging Spectrometer (MERIS) sen-
sor [45] were used to simulate the noise. MERIS noise-equivalent-radiance were converted
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Fig. 1. IOCCG: Derived versus known values of IOPs of the IOCCG data set. (a): absorp-
tion of Chla at 440 nm; (b): absorption of dg at 440 nm; (c): the backscattering of SPM at
550 nm; and (d): the total absorption at 440 nm.

to remote sensing reflectance using the table of Neckel and Labs [46], hereafter called MERIS-
NER. The noise were generated using the normal distribution with mean equal to MERIS-NER
and standard deviation equal to that of IOCCG simulated spectra. Additional condition was
imposed such that the generated values are within ±70% of the original signal. It is believed
that a maximum of ±70% off the observed reflectance value is a realistic threshold for an ac-
ceptable noise level. This mechanism of adding noise will leverage an average noise level, i.e.
noise to signal ratio, about ± 32% of the original reflectance. The average is calculated over all
spectral bands and over all spectra. Table 2 shows the introduced noise level per wavelength av-
eraged over the IOCCG spectra as obtained from the noise level of MERIS-NER and standard
deviation of IOCCG reflectance.

Table 3 shows goodness-of fit parameters between derived and known IOPs as computed
from the model-II regression. Derived values of achla(440) are the most affected among other
IOPs. The slope of the regression line is now off by 50% from the 1:1 line with large intercept
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Table 2. Noise level: Introduced noise level, per wavelength, averaged over the spectra of
IOCCG data set. MERIS-NER and IOCCG standard deviation (std) were used to generate
the noise from a normal distribution. MERIS-NER is shown as a percentage of the average
original spectra. Only few wavelengths are shown.

wavelength [nm] 400 440 490 560 670 690
MERIS-NER noise±[%] 4.330 2.097 1.786 1.594 5.629 5.408
std of IOCCG [sr−1] 0.390 0.324 0.266 0.498 0.199 0.224
introduced noise ±[%] 32.69 32.11 29.20 33.19 32.28 32.93

∼1.7. The RMSE increased by five folds, bias by four folds and the R2 values is reduced to
0.712, in comparison to noise-free data (Table 1). Goodness-of-fit of derived adg is also de-
graded due to noise, to a lesser extent than achla(440). The slope is ∼40% off-unity and RMSE
and bias both increased by three folds, whereas R2 is reduced to 0.834. Derived values of to-
tal absorption coefficient seem to be stable to noise. The slope, intercept and RMSE roughly
increased by two-to-three folds in comparison to their counterparts in Table 1. The bias, is an
order of magnitude larger than that in noise-free case with negative value however, indicating
overestimation. R2 is slightly reduced to 0.96. Derived bb,spm(550) values have 28% off-unity
slope and 1.2 intercept. There is almost five folds increase in the RMSE value and two folds in-
crease in the bias value. The R2 is reduced to 0.85 in comparison to 0.99 of the noise-free case.
In general, IOPs values are underestimated at the lower-end, small values, and overestimated at
upper end, i.e. large values.

Table 3. Noisy IOCCG: RMSE and regression (type II) goodness-of-fit parameters be-
tween known values and derived IOPs from noisy IOCCG spectra. n is the number of data
points.

IOPs, n = 500 fr slope intercept RMSE bias R2

achla(440) 1 1.499 1.665 1.168 -0.221 0.712
adg(440) 1 1.398 0.325 1.264 0.592 0.834
a(440) 1 1.191 0.361 0.423 -0.035 0.963
bb,spm(550) 1 1.284 1.204 0.752 0.092 0.846

6. Validation

6.1. NOMAD data set

NOMAD data set consists of matches between measurements of remote sensing reflectance and
IOPs: 1279 matches for achla(443), 1126 matches for adg(443) and 369 matches for the back-
scattering coefficient bb,spm(405). The combined effect of detritus and gelbstoff, in Eq. (5), was
assumed to be comparable to the sum of measured values of detritus and gelbstoff absorptions.
Figure 2 shows derived versus measured values of IOPs and Table 4 details goodness-of-fit
parameters.

The method is adequate to derive the absorption coefficients of Chla, dg and the total absorp-
tion. The R2 values are above 0.8 with slope and intercept that are of comparable magnitudes to
the values in Table 1. The slope of derived achla(440) is 4.5% off-unity with intercept of about
-0.31. The RMSE value is merely twice, 0.64, as that of simulated IOCCG data while the bias is
positive and about 0.18. Goodness-of-fit parameters of derived adg(440) are slightly degraded
when compared to the values in Table 1. The slope is off the 1:1 line by 20% with negative in-
tercept ∼-0.26. The main observation is that the derived values of adg(440) are underestimated
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Fig. 2. NOMAD: Derived versus measured values of IOPs of the NOMAD data set. (a):
absorption of Chla at 440 nm; (b): absorption of dg at 440 nm; (c): the backscattering of
SPM at 550 nm; and (d): the total absorption at 440 nm.

with positive bias of ∼0.8. The fit of derived total absorption coefficient follows the same trend
as that presented in Table 1, i.e. it has better fit to measured values than achla(440) or adg(440)
alone with R2 ∼0.91. The slope is less than 4% off-unity with negative intercept. RMSE and
bias values are, respectively, about 3 and 35 folds larger than those in Table 1.

Derived values of backscattering coefficients are less accurate in comparison to other IOPs
and Table 1. The values of bb,spm(550) are underestimated at the lower end and over estimated
at the higher end. There are also 5% of non valid retrievals. The solution was, basically, trapped
to zero in these data points. The regression line has a slope which is 34% off-unity and a large
intercept up to 2. RMSE and bias values are two folds, 0.363 and -0.108, larger that their coun-
terpart in Table 1. The negative bias of bb,spm(550) indicates that there is slight overestimation.
R2 values is now 0.73 as compared to 0.99 in Table 1. Possible reasons for deriving less accurate
IOPs from the validation data sets are discussed later in Section 7.
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Table 4. NOMAD: RMSE and regression (type II) goodness-of-fit parameters between
measured and derived IOPs IOPs values using the NOMAD data set. n is the number of
data points.

IOPs n fr slope intercept RMSE bias R2

achla(440) 1279 1 0.955 -0.306 0.644 0.175 0.808
adg(440) 1126 1 1.196 -0.261 1.085 0.792 0.807
a(440) 1125 1 1.036 -0.312 0.549 0.382 0.913
bb,spm(550) 369 0.951 1.344 2.025 0.363 -0.108 0.726

6.2. SeaWiFS match-up data set

Match-up data set contains spectra of SeaWiFS and NOMAD-measured IOP(s) that have sim-
ilar geographical location and sampling time. SeaWiFS match-up data set consisted of 132
matches for the absorption coefficients and 29 matches for the backscattering coefficient. Fig-
ure 3 shows derived IOPs from SeaWiFS spectra versus measured values from NOMAD data
set. Goodness-of-fit parameters are detailed in Table 5.

Derived values of absorption coefficient are relatively accurate with R2 being above 0.7.
Especially chlorophyll-a absorption with R2 value above 0.85, 5% off-unity slope and small
intercept value ∼-0.2. The RMSE value is comparable to that in Table 1 and did not exceed
0.5. The magnitude of total bias, 0.064, is even smaller than its counterpart in Table 1, in abso-
lute values. The positive bias of 0.064 indicates that the achla(440) are slightly underestimated.
Goodness-of-fit parameters of derived adg(440) are comparable to those obtained from the op-
timal case (Table 1). The slope is still ∼15% off-unity with intercept of about -1. The RMSE
value has increased to 1 and R2 is reduced to 0.7. Total absorption is derived with 8% off-unity
slope and -0.4 intercept. The RMSE and bias values slightly increased, compared to Table 1,
to 0.45 and 0.25. There is also a strong correlation, R2 ∼0.91 between derived and measured
values. Derived values of backscattering coefficient, similar to the NOMAD case, are less reli-
able. Model-II regression line has a slope that is 17% off-unity and large intercept of 0.93. The
RMSE values slightly increased to 0.25 and the R2 value dropped to 0.49.

Table 5. SeaWiFS match-up: RMSE and regression (type II) goodness-of-fit parameters
between measured and derived IOPs values using SeaWiFS match-up data set. n is the
number of data points.

IOPs n fr slope intercept RMSE bias R2

achla(440) 132 1 0.954 -0.207 0.459 0.064 0.866
adg(440) 131 1 0.849 -1.006 1.009 0.529 0.704
a(440) 131 1 0.938 -0.392 0.445 0.2531 0.912
bb,spm(550) 29 1 1.165 0.932 0.250 -0.028 0.491

7. Discussions

7.1. Performance with simulated data

The developed inversion algorithm showed a good performance with simulated IOCCG data.
The slope of model-II regression line was close to unity for all IOPs with intercept that did not
exceed 0.35. The RMSE values were also acceptable and less than 0.5 whereas the R2 value
were above 0.96 for all IOPs and reaching 0.99 for the total absorption and backscattering
coefficients. The RMSE value, ∼ 0.32, of Chla absorption coefficient is one eighth of RMSE
∼ 2.26 value reported in Salama et al. [16]. They used the same ocean color model (section
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Fig. 3. SeaWiFS match-up: Derived SeaWiFS IOPs versus measured IOPs of the NO-
MAD data set. (a): absorption of Chla at 440 nm; (b): absorption of dg at 440 nm; (c): the
backscattering of SPM at 550 nm; and (d): the total absorption at 440 nm.

2) and IOCCG data set but employing a nonlinear minimization technique, i.e. constrained
levenberg-marquardt.

The underestimation of adg(440) and overestimation of achla(440) compensated each other
when computing the total absorption coefficient resulting in the smallest bias 0.003 which is
almost 20 folds less than that of the backscattering coefficient.

The results of Fig. 1 support the statement made in Section 4.2: assuming a normal distribu-
tion to carry out the inversion does not imply that the actual variability of IOPs follows the
normal distribution, because the variance of the solution pdf is zero. The discreet distribution
of known values in Fig. 1(a) is uniform and close to uniform for known values in Fig. 1(b) and
Fig. 1(c).
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7.2. Stability

Measurement errors are related to intrinsic noise of the sensor and to residuals from subsequent
corrections. Each sensor, ship or space borne, has a noise level that is related to its specification
and sensitivity losses over time. In case of noisy data the cost function [Eq. (12)] will have
a noise component. Generated IOPs and the updating in Eq. (19) are, however, independent
of sensor noise. Therefore it is expected that the inversion method will filter out observation’s
noise as it was shown in Fig. 4. There is no mathematical prove for this noise-filtering effects
but we could numerically demonstrate it in Table 3. The ability of cross-entropy method to
filter noise during optimization was also demonstrated by Rubinstein and Kroese [27, chapter
6, pp.203-226] using numerical examples. This is one of the major advantages of the proposed
method. It can basically filter the noise up to a maximum of ±70% of the observed signal,
equivalent to 32% averaged over spectra and wavelengths (Table 2). Figure 4 is shown to give
a visual perception of the introduced noise level and the stability of inversion from noisy data.
In Fig. 4 we plot the best-fit spectra to the noisy-data from which we derived the IOPs, noisy
data and original noise-free spectra. We selected 6 spectra, indexed in the data itself as 1, 100,
200, 300, 400, 500. Figure 4 clearly shows how the method was able to filter considerable
range of the noise. The derived IOPs are also acceptable for the imposed noise level with R2 >
0.7 and RMSE < 0.6 (Table 3). Chlorophyll-a absorption coefficient is the most affected by
the introduced noise. This is because noise can randomly introduces dips in reflectance at the
absorptions bands of chlorophyll-a around 440 nm and 665 nm which might be interpreted as
high chlorophyll-a absorption. Derived values of absorption coefficient seem to be stable to
sensor noise as the sum adg(440) and achla(440) may compensates the over/under estimations
in both parameters. The small value of bias in derived bb,spm can be explained by the random
nature of noises. Equal under/over estimation might be introduced by noise, thus eliminating
each others when computing the bias.

7.3. Validation

The develop inversion algorithm was validate using ocean color data of in-situ measurements
and satellite match-up. The derived values of achla(440) and a(440) are in general reliable.
The slope values of model-II regression were 3-6 % off-unity with small values of intercept
and bias and RMSE values below 0.6. The R2 exceeded 0.8 and 0.9 for Chla and total ab-
sorption coefficients respectively. Derived values of adg(440) were less accurate in both data
sets with slope values about 15-20% off-unity and large values of intercept, bias and RMSE.
An overestimation of achla(440) is associated with underestimation of adg(440) and vice versa.
This type of degeneracy, is due to the overlapped absorption peaks at 440 nm of Chla, detri-
tus and glebstoff. This trend was clearly illustrated by increased accuracy of total absorption
coefficient over the accuracy of individual components, i.e. achla(440) and adg(440). Although
derived values of backscattering coefficient were accurate and somehow stable to noise (Tables
1 and 3), less reliable results of SPM backscattering were obtained from NOMAD and Sea-
WiFS match-up data. Model-II regression line deviated by up to 35% from unity with large
intercept values. Moreover, the solution was trapped to zero in 5% of backscattering data. The
R2 values were reduced to 0.7 for the NOMAD and to 0.49 for SeaWiFS match-up. The sample
size of SPM backscattering in the SeaWiFS match-up was, however, small 29. The small sam-
ple number increased the vulnerability of statistics in Table 5 to be influenced by outliers, i.e.
the two upper-left points in Fig. 3(c). For instance, removing these two points will improved
the goodness-of-fit of derived bb,spm(550) in SeaWiFS match-up data set to: [slope = 1.286,
intercept = 1.532, RMSE = 0.143, bias = 0.024 and R2 = 0.855]. The fraction of valid retrieval
in this case will be f r = 27/29 = 0.931. There are other sources of uncertainty than the over-
lapped blue-absorption feature of achla(440) and a(440) and the small sample of backscattering
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Fig. 4. Examples of inversion from noisy-IOCCG data set. Six spectra of the noisy-IOCCG
spectra are shown: (a) 1st; (b) 100th; and to (f) the last spectrum number 500. The black
lines are spectra derived from the noisy spectra (dark gray lines) using the proposed
stochastic inversion. Original noise-free spectra are shown in light gray lines. Maximum
noise level is kept to ±70% of the original values.
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in SeaWiFS match-up data, these are discussed in (7.4).

7.4. Uncertainty

Ocean color data inversion is associated with many sources of uncertainty that may affect the
accuracy of derived IOPs. These sources can be summarized in four major components://

i- Spectral characteristics: NOMAD and SeaWiFS match-up spectra have on average 10
and 13 spectral bands, respectively. Their bands cover the spectral range from 411 nm to 683
nm. In IOCCG data set we used 33 bands covering the spectral range from 400 nm to 720
nm at 10 nm interval. The spectral characteristics of observed remote sensing reflectance has
direct effect on the accuracy of derived IOPs. Large number of spectral bands will increase
inversion’s degree-of-freedom, i.e. number of band minus number of unknowns. In turn, there
will be a higher probability in obtaining a better spectral fit to the observed spectrum, hence
derived IOPs are less ambiguous. The extension of the spectral bands to 720 nm may improve
the accuracy of derived Chla absorption and SPM backscattering coefficient. The red absorption
peak of Chla round 665 nm is unique and facilitate a good separation of achla(440) and adg(440)
from the total absorption. Further in the red part of the spectrum, >680 nm, water remote
sensing reflectance is almost a direct function of SPM backscattering coefficient [47]. This
direct functionality of bb,spm(550) and Rsw(> 680) may stabilize the inversion at this spectral
range leading to more accurate values of bb,spm(550).

ii- Measurement error: We showed in Section 5.2 that although derived IOPs were stable to
sensor noise, their accuracies were slightly degraded. In addition to sensor noise, measurement
errors could be related to residuals from subsequent corrections. For example, ocean color
satellite spectrum contains additional residuals from atmospheric correction (AC) and post-
AC adjustments [48] that affect the retrieval of IOPs. The accumulation of sensor noise and
subsequent correction error will increase the uncertainty of derived IOPs [22].

iii- Model approximation: Employed approximations in the forward-model (Section 2) may
not precisely describe the optical processes that have caused the observed spectrum. The model
and its parametrizations did not take into consideration the bidirectional effects of remote sens-
ing reflectance. Assuming an isotropic angular distribution of the up-welling radiation may im-
pose an additional error component that will propagate to the derived IOPs [49, 50]. Moreover,
each of the used parametrization has its own limitation. Equation (4) ignores the different phy-
toplankton species and the wide variability of Chla absorption as measured in nature [51–53].
Equation (5) combines the absorption effects of detritus and gelbstoff in one spectral shape
and magnitude. In Eq. (6) the backscattering ratio of SPM is set equal to the Petzolds integrated
volume scattering data ∼0.0182 which may not represent the actual values of sea particles [54].
Moreover, the power law of the backscattering spectral shape as modeled in Eq. (6) is inaccurate
in the presence of absorption from non algae particles [55].

iv- Uniqueness: There are many sets of IOPs that may have caused the observed spec-
trum [56]. The proposed method derived most of these sets as elite samples and update the
next iteration. The final solution can, therefor, be regarded as the optimal average of all prob-
able sets of IOPs. This averaging on the one hand reduces the probability of having a spiked
solution, i.e. large error, and on the other hand derives a smoothed solution between all possible
sets of IOPs. Derived IOPs have, thus, an intrinsic error component that is associated with the
used inversion method.

Spectral characteristics and measurement error are the major reasons of deriving more accu-
rate IOPs values from IOCCG than from NOMAD and SeaWiFS match-up data set.
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7.5. Convergence and processing time

The convergence of the method is guaranteed [27, proposition 3.19 page 83]. Table 6 gives
insight about the average number of iterations that were needed for convergence. From Table 6
we can approximate the maximum number of iteration at 95% of confidence to be 31 iterations,
i.e. 15 + 2× 8. In Table 6 we, however, did not consider the preprocessing iterations to select
the optimal initial value of σ0, as described in Sections 4.2. The values of Table 6 can roughly
be multiplied by factor of five to consider the total iterations that were needed to select the
optimal initial values σ0 and derive the IOPs.

The total processing times averaged over spectra per data set are shown in Table 7. Total
processing time was calculated as the overall time needed to generate the initial pdf, using sim-
ulated annealing, and derive the IOPs using cross-entropy. Processing time per spectrum seems
to be a function of bands number and the degree of noise. On average, noisy-IOCCG spectrum
has the largest processing time followed by noise-free IOCCG, NOMAD and SeaWiFS spectra
as averaged over the corresponding data set. There might be a trade-off between processing
time and number of bands. NOMAD data set has an average of 10 bands per spectrum and
longer processing time in comparison to SeaWiFS match-up data set which has an average of
13 bands per spectrum and the shortest processing time. These observations (Tables 6 and 7)
are not conclusive and are meant to give the reader an idea about number of iterations and
processing time as related to used data sets.

Table 6. Number of iteration: Statistical parameters for number of iterations per spectrum
averaged over each data set. Average and standard deviation values were rounded up to the
closest integer.

data set μ σ min max
IOCCG 11 5 3 29
noisy-IOCCG 15 8 4 80
NOMAD 17 6 4 91
SeaWiFS match-up 12 3 6 23

Table 7. Total processing time: Statistical parameters for total processing time (in sec-
onds) per spectrum averaged over each data set.

data set μ σ min max
IOCCG 2.121 0.600 1.174 4.625
noisy-IOCCG 3.150 1.146 1.362 10.947
NOMAD 1.017 0.369 0.500 3.636
SeaWiFS match-up 0.762 0.202 0.493 1.289

7.6. Limitation

The major limitation of the presented inversion algorithm is its sensitivity to the starting pdf.
Initializing a pdf from a normal distribution, N(μ,σ), requires the two parameters μ0 = iop
and σ0. The initial values of σ0 were set as ς μ0 to reduce the freedom of initialization. We
used simulated annealing [43] to define the optimal value of σ0. Defining the value of σ0 using
simulated annealing will limit the initialization to μ0 on the cost of speed and increased depen-
dency on μ0. Values of μ0 were initialized using the expressions of Lee et al. [14] as briefed in
appendix (A).
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7.7. Algorithm extension

The proposed inversion algorithm can easily be extended to include the variability of Chla ab-
sorption that may correspond to different phytoplankton species. There are two approaches to
derive the natural variability of Chla absorption: i- include one unknown for each Chla absorp-
tion curve; ii- find the Chla absorption curve that results in the best-fit. The first approach, i,
is based on the assumption that Chla absorption varies within one observed spectrum or satel-
lite pixel. This approach seems to be more suitable for coarse satellite pixel and /or productive
coastal and estuarine waters, where different phytoplankton species may co-exist and/or the
variability of Chla absorption is large. Whereas the second approach, ii, assumes that Chla
absorption is constant for a spectrum, but vary between different spectra, or satellite pixels.
This approach, ii, is more suitable for open ocean waters and do not require large increase of
the number of unknowns as in the first approach i. We, therefore applied approach ii to derive
the variability of Chla absorption from NOMAD and SeaWiFS match-up data sets. Hereafter,
we give an explanation on how to derive the variability of Chla absorption from ocean color
data using a modified version of our inversion algorithm (3.3).

We simply added another unknown to Eq. (7). This unknown, denoted as ι , is the index
of a Chla absorption curve in the used data set. We used reported values of normalized Chla
absorption curves [51–53]. Equation (4) is adapted to become achla(λ ) = achla(440)×achla(λ ),
where achla(λ ) is the normalized absorption coefficient, i.e. Chla absorption normalized to its
value at 440 nm. Values of ι are drawn from a uniform distribution such that each normalized
absorption coefficient gets an equal chance to be selected during the inversion. The elite samples
in step 6, Section 3.3, is adjusted for ι such that only the best elite sample is selected. We applied
the modified algorithm on NOMAD and SeaWiFS match-up data sets, only derived values of
achla(440) and adg(440) will be discussed.

Deriving the natural variability of Chla absorption coefficient has slightly improved the accu-
racy of achla(440) and adg(440) when derived from NOMAD and SeaWiFS match-up spectra.
The RMSE between known and derived values of normalized Chla absorption coefficients is
computed using similar form to Eq. (21). Figure 5 shows the RMSE values of achla(λ ) vari-
ability as derived from NOMAD and SeaWiFS match-up data sets. Since we normalized by
achla(440), small values of RMSE are expected in the vicinity of the blue absorption feature
of Chla. RMSE values, however, increase from 440 nm to longer wavelength reaching to a
maximum value around 560 nm and gradually decrease to a local minimum around 675 nm,
the red absorption feature of Chla. RMSE values in Figs. 5(a) and 5(b) approximately mirror
a standard Chla absorption curve with RMSE values of NOMAD being larger than those of
SeaWiFS, especially at the red part of the spectrum. This is due to the reduced number and
extent of NOMAD’s spectral bands. The missing bands were mainly in the red spectral region
which increased the uncertainty of derived Chla absorption at the red bands. The advantage of
this modification is that we were able to derive an indication of Chla variability, rather than
using the fixed regression coefficients a0 and a1 in Eq. (4) or one curve of normalized Chla
absorption coefficient.

Potential implication of including phase function variation was not considered in the current
work. Future work should, however, include changes in phase function, especially spectral ones.

8. Conclusions

In this paper we developed a stochastic inversion algorithm based on the cross-entropy method
to derive inherent optical properties from ocean color data. The proposed inversion method was
validated using four data sets: IOCCG and its noisy version, NOMAD and SeaWiFS match-up
data sets. The followings are concluded:
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Fig. 5. RMSE between derived and known values of normalized Chla absorption coeffi-
cient, achla(λ ) of (a): NOMAD data set and (b): SeaWiFS match-up data set.

1. The method is self contained and easy to implement with far fewer inputs, e.g. informa-
tion about curvature is not needed. The only needed input is the observed reflectance and
some initial values, in case the initializations of Lee et al. [14] can not be applied.

2. In all validation exercises, the derived IOPs have acceptable accuracy, R2 > 0.7 (after
removing the outliers) and RMSE did not exceed 1.1.

3. The derived IOPs are stable to sensor noise. The inversion can filter noise up to a maxi-
mum of ±70% of observed remote sensing reflectance.

4. The method can easily be modified to derive the variability of chlorophyll-a absorption
coefficient that may correspond to different phytoplankton species.

5. The developed inversion was validated against variety of data sets, simulated, measured
and satellite match-up. With careful initialization, the proposed inversion could be used
for global derivation of IOPs from ocean color data.

A. Initial values

The initial values of μ0 = iop were adopted from the work of Lee et al. [14] and used to
initialize the pdfs of IOPs from N(μ0,σ0):

achla(440) = 0.072r−1.62
1 (A.1)

adg(440) = achla(440) (A.2)

bb,spm(550) = 30aw(640)Rsw(640) (A.3)

y = 3.44 [1−3.17exp(−2.01r2)] (A.4)

where, r1 and r2 are the ocean color ratios: r1 = Rsw(440)/Rsw(550) and r2 =
Rsw(440)/Rsw(490), respectively. The values of σ0 were related to μ0 by a scaling factor ς
and computed using simulated annealing.
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