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Abstract: Knowledge of river engineering impacts on water discharge is significant to flow guidelines
and sustainable water resource managements for balancing human consumption and the natural
environment. In this study, based on the collected multi-decadal discharge data at Yichang,
Hankou, and Datong stations, we determined that in October, Three Gorges Dam contributed
34.4%, 24.5%, and 18.7% to the discharge decrease in the upper, middle, and lower reach, respectively,
while Gezhouba Dam contributed 14.5%, 10.7%, and 10%. Danjiangkou Reservoir caused the
discharge ratio of Hanjiang to Changjiang to decline from 7.2% during 1954–1973 to 6.3% during
1973–2014. Owing to growing water withdrawal and consumption, we suggest that the distribution
of water diversion and consumption should be regulated to prevent the probable occurrence of the
severe issue of salt water intrusion in the Changjiang Estuary in 2028.
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1. Introduction

The water discharge of large rivers plays an important role in the economic development of
drainage basins and the balance between continental freshwater and oceanic saltwater [1–3]. However,
river engineering—such as dam construction and flow diversion, which have been carried out to
control floods and meet the water, energy, and transportation needs of cities—has extensively altered
mainstream discharge and caused changes in water resources all over the world [4–8]. Accordingly,
it is of vital importance to determine how water discharge responds to the impacts of river engineering.

Since the beginning of the Anthropocene, intensive human activities, especially a series of river
projects, have exerted profound impacts on water discharge. Nilsson et al. [4] showed that over half
of the large rivers worldwide (mean annual discharge anywhere in the catchment ≥350 m3/s) were
affected by dams so that the river systems were constrained and fragmented. Grill et al. [9] noted that
only 37% of large rivers worldwide remain free-flowing without engineering interference and that
23% flow to the ocean uninterrupted. In the Eurasian Arctic, McClelland et al. [10] found that the
dams of the six largest rivers dramatically changed the seasonality of the discharge but were irrelevant
to the annual increase in discharge. Botter et al. [11] found a notable decrease in water discharge in
response to the operation of the dam in the Piave River in Italy. In North America, Burke et al. [12]
found that the minimum discharge increased and the duration of the dry season changed clearly under
the impact of the operation of the Libby Dam in the Kootenai River. Mix et al. [13] concluded that
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building reservoirs in the upper Colorado River basin, Texas, USA, reduced the streamflow notably and
exacerbated downstream hydrological droughts. In Southern Africa, agricultural water use accounts
for nearly 33% of the water used from the Orange-Senqu River, which is much larger than the amount
of water consumed through evaporation and riverine vegetation [14]. Although previous studies
have paid attention to the impacts of dams or water use on discharge [13–16], few have conducted a
comprehensive analysis of discharge variation in response to integrated river engineering involving
dams, irrigation, water diversion projects, etc.

The Changjiang River is the longest river on the Asian continent and the third longest river
in the world, and it receives substantial runoff at 905.5 billion m3 [4,17]. It originates from the
Qinghai-Tibet Plateau at an elevation of 6600 m, flowing into the East China Sea with a catchment
area of 1.8 × 106 km2 [18,19] (Figure 1). By convention, the Changjiang River is divided into three
subsections: the upper section (from the source to Yichang), the middle section (from Yichang to
Hankou), and the lower section (from Hankou to Datong) [16,20]. As Datong is the upstream limit
of tidal influence, the section from Datong to the river mouth is defined as the estuary reach [21].
In China, nowhere has the impact of river engineering been more significant than the Changjiang
River because almost half of the world’s large dams—of which the vertical depths are higher than
15 m—have been built here since 1950 [16]. In particular, the Changjiang River basin, where there are
more than 400 million inhabitants, has the world’s largest dam, Three Gorges Dam (TGD), and large
flow diversions, such as the South-to-North Water Diversion Project (SNWDP) (Figure 1).
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Figure 1. Map of the Changjiang drainage basin and locations of hydrological stations, reservoirs,
and the South-to-North Water Diversion Project (SNWDP).

In addition to the TGD, the Gezhouba Dam (GD) and the Danjiangkou Reservoir (DR) were
constructed in the upper and middle reaches, respectively [16]. The expected capacity of these
reservoirs is 300 billion m3 by 2030 [22]. In addition, various types of water usage are noticeably
increasing through intensive pumping in the Changjiang Basin [15]. With the operation of these large
projects, the original pattern of Changjiang River water resources in the flood or dry season and
different months has already changed [16,19,23–27]. Therefore, a holistic analysis of the impacts of
river engineering on the water discharge of Changjiang is urgently required. Based on the available
collected data, the aims of this research are (1) to examine the decadal water discharge variation in
the Changjiang watershed, (2) to determine how river engineering influences the characteristics of
discharge, and (3) to determine the variation trend in Changjiang water discharge in the future.
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2. Data and Methods

2.1. Data Collection

The hydrological data were monitored daily from 1954 to 2014 at the Yichang, Hankou, and Datong
gauging stations and were collected from the Changjiang Water Resources Commission (CWRC)
(http://www.cjh.com.cn) (Figure 1 and Table 1). The distance between Yichang station and the TGD
is approximately 39 km, and the runoff through Yichang station represents the upstream discharge.
Hankou station, 660 km downstream from Yichang station, controls the discharge in the middle reach
of the Changjiang River. Discharge at Datong, which is 460 km away from Hankou, indicates discharge
into the estuary [27]. Moreover, the DR is located in the Hanjiang River, which is the longest tributary
of the Changjiang River. Huangzhuang station records the discharge from the Hangjiang River into the
Changjiang River (Figure 1). We also collected the water usage data basin-wide in Changjiang from the
Ministry of Water Resources of the People’s Republic of China (http://www.mwr.gov.cn/sj/tjgb/szygb/).
Data with different collection frequencies and durations at each station are shown in Table 1.

Table 1. Related data specifications.

Gauging Station Time Span Frequency

Discharge

Yichang Jan. 1954–Dec. 2014 Yearly
Hankou Jan. 1954–Dec. 2014 Yearly
Datong Jan. 1954–Dec. 2014 Yearly
Yichang Jan. 1956–Dec. 2014 Monthly
Hankou Jan. 1956–Dec. 2014 Monthly
Datong Jan. 1956–Dec. 2014 Monthly

Water usage Basin-wide 2002–2017 Yearly

2.2. Methods

Linear regression, which is a linear approach to modelling the relationship between two variables,
is a straightforward and applicable method that is used to process long, serial water discharge
data [19,28]. In this research, yearly and monthly discharge data were linearly fitted by the least square
method to find the trend in discharge variation.

Wavelet analysis is a mathematical technique that can decompose a signal into multiple lower
resolution levels. To detect multiple-scale fluctuations in discharge variation, the wavelet technique [29,30]
was applied to analyze the periodicities in the monthly flow data from 1956 to 2014 at the three reference
gauging stations. Here, the continuous wavelet transform was expressed as follows:

W(a, b) =
〈
x(t), ϕa,b(t)

〉
=

∫ +∞

−∞
x(t)ϕ∗a,b(t)dt =

1
√

a
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(
t−b

a

)
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where a is a scaling (dilation) parameter, b is a position (translation) parameter, x(t) is the flow variation
at each station for 1956–2014, ϕ(t) is the wavelet basis function, ϕ*(t) is the complex conjugate of the
wavelet coefficient, and a and t are the scale and time parameters, respectively. Then, we selected the
complex Morlet wavelet as the basis wavelet function:

ϕ(t) =
1√
π fb

ei2π fct−(t2/ fb) (2)

where fc is the central frequency of the mother wavelet and fb is the bandwidth.
In addition, the Mann−Kendall (MK) test, which is a common trend detection method, was used to

analyze the trends and abrupt changes in river flows each month at the three stations. The calculation
procedure of this method was explained in detail by Smith and Xu [31,32]. As a significance level
(p = 0.05) was assumed, an increasing trend was statistically significant when the MK statistic
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Z > 1.96, and when the MK statistic Z < −1.96, a decreasing trend was statistically significant. Thus,
the progressive series and the retrograde series were calculated [33]. Then, we found abrupt changes
when the two series intersected within the threshold from −1.96 to 1.96 at the significance level of
p < 0.05.

3. Results

3.1. Decadal Characteristics of Changjiang Water Discharge

Yearly water discharges at the three gauging stations along Changjiang were calculated by
averaging the monthly flow during 1954 to 2014 (Figure 2). Figure 2a,c,e shows that the yearly
water discharge curves in Yichang, Hankou, and Datong from 1954 to 2014 had different variation
characteristics. According to the regression equation at Yichang station (Figure 2a), the annual discharge
decreased by 23 m3/s between 1954 and 2014, at a significance level of p < 0.05, indicating that there was
a slight declining trend in the annual discharge at Yichang station. At the Hankou and Datong stations,
the variation trends were not significant. In addition, it was notable that the discharge decreased
sharply by 38% at Yichang station from 2005 to 2006, and at Hankou and Datong, the discharge
decreased by 28% and 23%, respectively (Figure 2a,c,e).
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Figure 2. The annual discharge and mean decadal discharge of the Changjiang River at the three
gauging stations. (a,b) Yichang, (c,d) Hankou, and (e,f) Datong. The red line indicates the linear
regression at each station. The p value represents the significance level.

Furthermore, the mean decadal river discharges at the three stations were compared. Figure 2b,d,f
shows that the ten-year mean annual runoff presented a clearly decreasing trend at Yichang station.
Specifically, the mean annual runoff was 454 billion m3 in the 1960s, declined to 406 billion m3 in the
2000s, and then increased to 408 billion m3 in the 2010s, with a total decrease of approximately 10%
(Figure 2b), and there were similar trends at the Hankou and Datong stations (Figure 2d,f). Moreover,
there were notable decreasing trends from the 1960s to 1970s and from the 1990s to 2000s at all three
stations, while the mean annual runoff in the 1990s was clearly greater than in other decades.
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3.2. Pattern of Seasonal Water Discharge Variability

Figure 3 shows that the average monthly water discharge at the three stations from 1954 to 2014
was strongly seasonal. It is notable that the discharges from May to October were all larger than
those from November to April. This was consistent with the flood season (from May to October) and
dry season (from November to April), which were defined by previous researchers in Changjiang
Basin [18,24]. In addition, the average monthly flows at the three stations all peaked in July and
reached a minimum value in January (Figure 3).
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Hankou, and Datong.

The mean discharges of the flood season and dry season and the discharge ratio of the flood season
to the dry season at the three stations are plotted in Figure 4. The maximum mean discharges in the
flood season during 1956–2014 were in 1998 at the three stations; however, the times of their maximum
mean discharges in the dry season were different (Figure 4a–c). The maximum value of the dry season
peaked in 2014, which was not a flood year, at Yichang station, and peaked in 1964 and 1998 at Hankou
and Datong stations, respectively. On the other hand, the minimum mean discharges in the flood
season and dry season were concentrated in 2006 and 1979, respectively, at the three stations. Moreover,
the mean discharges of the dry season from 2003 to 2014 at Yichang showed a clearly increasing trend.

In addition, the maximum discharge ratios of the flood season to the dry season at Yichang and
Datong from 1956 to 2014 both appeared in 1998, while that at Hankou was in 1979. The minimum
flood/dry season discharge ratios at the three stations all occurred in 2006 (Figure 4d–f). In addition,
the discharge ratios of the flood season to the dry season at the three stations all presented decreasing
trends, with Yichang station exhibiting the most remarkable decrease. The mean value of the
flood/dry season discharge ratio decreased from 3.8 in the 1960s to 2.7 in the 2010s at Yichang,
from 2.6 to 2.1 at Hankou, and from 2.3 to 1.9 at Datong, indicating a weakened seasonality of
mega-Changjiang discharge.
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3.3. Trends in Monthly Water Discharge Variability

Monthly water discharges from 1956 to 2014 were extracted to conduct MK trend analyses. Table 2
shows the Z scores of the discharges in different months at the three gauging stations, and Z > 0
(Z < 0) indicated an increasing (decreasing) trend. In some months, the increasing/decreasing trends
were especially significant (p < 0.001). The Z scores at Yichang peaked at a value of 9.96 in February,
while those at Hankou and Datong peaked at values of 10.45 and 9.68 in January, respectively,
which indicated that the water discharges in these months from 1956 to 2014 increased dramatically.
There were similar trends in February and March. In contrast, the minimum Z scores were −7.08 at
Yichang, −5.44 at Hankou, and −3.41 at Datong in October, indicating that the water discharge in
October from 1956 to 2014 decreased dramatically. The declining trend was also notable from August
to November at the Yichang station. In addition, the trends in the flood season in June and July were
not statistically significant at the three stations, with the Z scores ranging between −1.02 and 0.6.

Table 2. Mann−Kendall trend analyses of discharge in different months at different control stations.
N represents the number of data samples (years).

Yichang Hankou Datong N

Annual −3.34 −0.37 −0.16 61
January 8.91 10.45 9.68 59

February 9.96 9.09 7.60 59
March 7.92 6.33 6.01 59
April 3.94 1.31 0.17 59
May −0.35 −3.04 −2.96 59
June −1.02 0.25 0.27 59
July −0.90 0.00 0.60 59

August −3.31 −0.07 0.85 59
September −2.66 −1.74 −0.13 59
October −7.08 −5.44 −3.41 59

November −3.43 −2.32 −1.41 59
December 0.12 2.30 3.00 59

In addition, a wavelet analysis was conducted on the monthly discharge at the three stations
for 1956–2014 (Figure 5). According to the wavelet power spectrum and global wavelet spectrum,
the discharges showed significant periodic behaviors. The enclosed regions within the thick black
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contour indicated that there were strongly periodic components over 12 months at all three stations
(p < 0.05). In addition, at the Hankou and Datong stations, there was a clear period of approximately
84–120 months at a significance level of 0.05. These periodicities indicated that the flow discharges of
Changjiang were characterized by multiple time-scale oscillations.
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3.4. Abrupt Changes in Water Discharges

The statistics of the annual water discharge during 1956–2014 were determined by the MK test
(Figure 6). At Yichang station, the MK test showed that abrupt changes took place in 1955, 1961, 1973,
and 2001 within a certain range between −1.96 and 1.96. A similar pattern of the MK test appeared at
both Hankou and Datong station. Abrupt changes occurred simultaneously in 1954, 2006, and during
the period from 1960 to 1980 at the two stations.

Additionally, the sequential MK test of the monthly mean water discharge series during 1956–2014
was also implemented. The MK statistical values of the monthly discharges at Yichang, Hankou,
and Datong station are presented in Figures 7–9, respectively. Figure 7 shows that significant abrupt
changes occurred in March, July, September, and October, 2003, at Yichang, while a number of abrupt
changes were detected in April in the 1990s, in May, 1970, in June and August, 2009, and in December,
2014. Similarly, abrupt changes were detected in October, 2003, and from April to August in the 2010s
at Hankou and Datong station (Figures 8 and 9). Furthermore, there were serious abrupt changes at
Datong station during 1956–2014 in August within a certain range between −1.96 and 1.96.
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Figure 7. Abrupt changes in monthly mean discharge from 1956 to 2014 at Yichang station. UFk is the
statistical data, which is calculated with progressive series, and UBk is calculated with retrograde series.
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Figure 8. Abrupt changes in monthly mean discharge from 1956 to 2014 at Hankou station. UFk is the
statistical data, which is calculated with progressive series, and UBk is calculated with retrograde series.
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Figure 9. Abrupt changes in monthly mean discharge from 1956 to 2014 at Datong station. UFk is the
statistical data, which is calculated with progressive series, and UBk is calculated with retrograde series.
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4. Discussion

4.1. Influence of Precipitation

Precipitation is the primary source of water in mega-Changjiang [23]. Precipitation also dominates
the total discharge that runs into the East China Sea [19]. Figure 10 shows the annual mean precipitation
over the upper, middle, and lower catchments of the Changjiang River, indicating that there were
neither decreasing nor increasing trends from 1956 to 2014 (Figure 10a–c). There were statistically
positive correlations between precipitation over the upper, middle, and lower catchments and the
corresponding discharge at the Yichang, Hankou, and Datong gauging stations, with significance levels
of p < 0.001 (Figure 10d–f). In addition, the low precipitation levels in the 1970s corresponded with low
discharges at the three stations (Figure 2b,d,f), and the high values of precipitation in the 1990s were
consistent with the high runoff amounts, especially in 1998 (Figure 10a–c). Therefore, these results
suggested that precipitation is the primary influencing factor controlling the annual discharge from the
Changjiang River to the sea.
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Figure 10. Annual mean precipitation over the (a) upper, (b) middle, and (c) lower catchments of the
Changjiang River and annual mean discharge of (a) Yichang, (b) Hankou, and (c) Datong. Correlation
analysis of the annual mean discharge and precipitation for (d) Yichang, (e) Hankou, and (f) Datong.
The red solid lines in panels (d–f) are the fitted results of the linear regression.

In addition, the wavelet analysis of annual discharge at the three stations from 1954 to 2014
showed common periods of 1 and 7–11 years at a significance level of 0.05 (Figure 5). Such periodic
variations were unlikely to be caused by anthropogenic influences, and previous studies have suggested
natural influences as the dominant factors [8]. Viles and Goudie [34] once demonstrated that there
were multiple time-scale periodicities that were closely correlated to the climatic variability across
the world. For example, the intra-annual fluctuations in water discharge were related to the annual
monsoon influences. Interannual-, decadal-, and multidecadal-scale intervals of water discharge were
most likely caused by a 7-year periodicity of El Niño and Southern Oscillation (ENSO) [35] and an
11-year periodicity of sunspot activity [8]. Therefore, the Changjiang River discharge was influenced by
precipitation over the catchment, which was dominated by the East Asian monsoon [28]. In addition,
the years of extreme flood and drought events were strongly correlated with the intensity of ENSO
and the East Asian monsoon [36].
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4.2. Influence of the Dams

While precipitation was responsible for the variations in and periodicity of the total water discharge
of the Changjiang River, dams also profoundly impacted the pattern of discharge distribution [19].
As shown in Figure 1, the TGD and GD were constructed in the mainstream of the Changjiang River,
and the DR was built in the mainstream of Hanjiang River, which is the largest tributary of the
Changjiang River, contributing 7% to runoff through the middle stream [37]. Here, we mainly analyze
the influence of the above three large dams.

The Danjiangkou Reservoir water control project began in 1958 and was originally designed for
flood control, irrigation, and power generation. In 1973, it was completed and started to impound with
a maximum water level of 157 m, which was one of the large reservoirs built in China. Then, the GD
project was constructed, with the first and second stages completed in 1981 and 1988, respectively.
The GD was the first dam built on the Changjiang River, which was an important part of the TGD
project [38]. Thereafter, to enhance the power generation and flood control of the Changjiang River,
the TGD project was formally started. In 1997, the first stage of the TGD was completed, achieving
river closure. The reservoir began to impound water and generate electricity in 2003, showing that the
second stage of the TGD was completed. Finally, the TGD was put into operation at full capacity in
2009. Then, in 2014, the Danjiangkou Dam was heightened, and the water level was increased from
157 m to 170 m to meet the water resource demand of the SNWDP (middle line) (Figure 11).
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Located downstream of the Hanjiang River, the Huangzhuang gauging station records the water
discharge from the Hangjiang River to the Changjiang River. Before 1973, the mean discharge ratio
of the Hanjiang River to the Changjiang River was 7.2%, which decreased to 6.3% during 1973–2014,
since the DR was put into operation, suggesting that the Danjiangkou reservoir dominated the discharge
pattern of the middle Changjiang River catchment at a multidecadal scale (Figure 12).
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Thereafter, we divided the monthly mean discharge at the three stations into the aforementioned
six stages (Figure 13). It was evident that water discharge significantly decreased at Yichang station in
October, when each engineering project had been completed, and the discharge remained steady in
November and December; then, the discharge increased from January to March. Similar variations
also occurred at the Hankou and Datong stations. According to this trend, in October, TGD accounted
for 34.4%, 24.5%, and 18.7% of the decreases in discharge in the upper, middle, and lower Changjiang
catchment, respectively, and GD accounted for 14.5%, 10.7%, and 10% of the decreases. From January
to March, 42.5%, 26.4%, and 21.2% of the increases in discharge in the upper, middle, and lower
Changjiang catchment were caused by TGD, and the 16%, 12.4%, and 11.6% increases were caused by
GD, respectively (Figure 13). These results occurred because the reservoirs usually began to impound
in October and then were continuously replenished from January to March. The variations were
highly consistent with the pattern of monthly water discharge variability (Table 2, Figures S1–S3, in the
Supplementary Materials).Sustainability 2020, 12, x FOR PEER REVIEW 13 of 18 
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In addition, based on the monthly water discharge variation, the seasonal pattern of water
discharge also clearly changed. The mean water discharge in the flood season decreased evidently
from 1956 to 2014, while that in the dry season increased during this period, with the discharge
ratio of the flood season to the dry season declining significantly (Figure 4). This phenomenon was
especially notable at Yichang station and was induced by the great impact of the TGD operation.
The results supported the pattern of “no flood in the flood season and no drought in the drought
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season,” as reported by Dai et al. (2008) in the extreme drought year of 2006. It can be expected that
this trend will continue in the future following the regulation of various dam projects.

Furthermore, abrupt changes in the annual mean discharge at the three stations based on the MK
test all coincided with the year the reservoirs were completed or when an extreme flood or drought
occurred (Figure 6). Abrupt changes in the monthly discharge series showed a strong correlation with
the time when impoundment and replenishment were carried out at the reservoirs, which was especially
notable in October, 2003, when the first stage of the TGD was completed and the impoundment was
implemented (Figures 7–9).

4.3. Influence of Water Withdrawal

Water withdrawal projects and reservoir (dam) operations interact with each other, and they
are systematic engineering projects. Water was diverted from the main reservoirs for agricultural,
industrial, and human consumption, which would influence the discharge and water resources within
the reservoir in turn. A previous study has shown that the Eastern and middle routes of the SNWDP
(Figure 1), which have already been in operation, are providing water resources from the Changjiang
River for more than 100 million people in the areas of Jiangsu, Anhui, Shandong, Hebei, and Tianjin [39].
While the project benefits a large number of populations for their livelihoods in the North, this project
indeed has put enormous pressure on the water resources of the Changjiang catchment in the South.

According to the project plan, the construction and operation of the SNWDP middle line was
divided into three stages: by 2010, 9.5 billion m3 of water was diverted from the Danjiangkou Reservoir
annually on the basis of net water shortage in Northern areas, and this value accounted for 20% of the
annual discharge of the Hanjiang River. By 2030, an extra 3.5 billion m3 of water will be diverted from
the Changjiang River to the Hanjiang River to improve the annual mean discharge to Northern China.
By 2050, according to the water demand, a diversion project directly from the mainstream Changjiang
River to the Northern area could be built to improve the water supply capacity of the middle line [40].

In addition, the construction and operation of the SNWDP Eastern line were designed for three
stages from 2010 to 2030, respectively, with water diversions of 500, 600, and 800 m3/s [40]. Therefore,
the total discharge of the middle and Eastern lines will account for 5.7% of the annual mean discharge
of the Changjiang River at Datong. In 1979, which was an extreme drought year, the monthly mean
discharge of the Changjiang River was only 7220 m3/s in January at Datong, when the designed total
discharge of the SNWDP accounted for approximately 22% of the low flow.

In addition, Figure 14 shows that water consumption in the middle catchment was higher than
that in the upper and lower catchments, and the mean volume of water consumption in the upper,
middle, and lower catchments accounted for 4.2%, 10.3%, and 7.4% of the annual mean runoff of the
Changjiang River, respectively. Moreover, Figure 15 shows that the total water use increased from
168 billion m3 to 206 billion m3 from 2002 to 2017 following an increasing industrial water consumption
in the Changjiang catchment. Owing to the rising population and economic growth, water withdrawals
have become increasingly intensive, so sharp declines in water availability per capita have taken place
extensively in many areas of the world [14], as well as in the Changjiang catchment; this decline is
expected to worsen [39].
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4.4. Sustainability in the Future

At present, river systems worldwide have been extensively altered by anthropogenic stressors,
such as large-scale damming and water diversions, which are challenging the integrity and future of
these large rivers [41]. In addition, the rapidity and extent of such an impact on mega-Changjiang is
particularly evident and may be irreparable [37]. The total capacity of reservoirs constructed in the
Changjiang catchment was as high as 358.8 billion m3 in 2016, which accounted for approximately 40%
of the annual runoff through Datong, and it has been predicted that the total capacity will continuously
increase, owing to 100 river engineering construction projects (http://news.bjx.com.cn/html/20190617/

986650.shtml). In addition, Zhang et al. [42] noted that the water extraction capacity downstream
of Datong was almost 4000 m3/s, which was much more than the diversion capacity of the SNWDP
Eastern line. This directly induced saltwater intrusion in the Changjiang Estuary, which was a serious
issue affecting the development of society and the economy. Therefore, water withdrawal in the
downstream Changjiang catchment is one of the most important factors affecting saltwater intrusion in
the Changjiang Estuary. Based on previous investigations and simulations, when the water discharge
at Datong station is less than 11,000 m3/s, water extraction and diversion projects are paused or the
discharge of water withdrawal is reduced to avoid aggravating saltwater intrusion in the Changjiang
Estuary [43].
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Furthermore, the monthly mean water discharge in January was lower than that in other months,
indicating that in January, saltwater intrusion was most likely to occur in the Changjiang Estuary.
Owing to the replenishment of dams in the dry season, the monthly mean discharge during the
post-dam period was approximately 2388 m3/s more than that during the pre-dam period in January,
which greatly alleviated the current risk of saltwater intrusion. However, the rising water capacity of
the SNWDP and the expansion of water extraction and consumption have caused serious vulnerabilities.
Based on the present SNWDP capacity of 800 m3/s and its increasing water consumption volume
of 73 m3/s per year, we estimated that the monthly mean discharge in January will be less than
the threshold of 11,000 m3/s in 2028, probably resulting in the severe issue of saltwater intrusion.
Furthermore, the situation will continue to worsen over time because the capacity of the SNWDP will
reach the designed value of 1600 m3/s in 2030. If this coincides with a drought year, then the risk of
water shortage will be greatly increased. Therefore, while river engineering and water consumption
projects promote economic development and quality of life, we should regulate the distribution of
water diversion and consumption to ensure the sustainability and resilience of water resources.

5. Conclusions

The great rivers and their drainage basins worldwide are central to the development of human
civilization by providing water resources and transportation channels. However, they are facing
enormous challenges resulting from the expansion of river engineering. Based on the water-gauge
discharge data at the Yichang, Hankou, and Datong stations on a multidecadal scale, we examined
how river engineering impacts the water discharge of the mega-Changjiang. The main conclusions can
be summarized as follows:

1. During the period of 1954–2014, there was a minor decrease in decadal water discharge in the
upper Changjiang catchment and unremarkable variation in the middle and lower Changjiang
catchments. The mean discharge ratio of the flood season to the dry season decreased by 0.8,
0.5, and 0.4 from the 1960s to 2010s in the upper, middle, and lower Changjiang catchments,
respectively, indicating that the seasonality of the mega-Changjiang discharge was decreasing.
This resulted in a dramatic discharge decrease in October and remarkable increases from January
to March.

2. Precipitation dominated the annual discharge from the Changjiang River to the sea, which was
also responsible for the intra-annual fluctuations in water discharge.

3. As reservoir projects were put into operation, discharges decreased significantly in the flood
season (especially in October) and increased in the dry season (especially from January to March).
With water withdrawals and consumption becoming increasingly intensive, these two actions
accounted for approximately 22% of the annual mean runoff of the Changjiang River in 2017.
We therefore estimated that in 2028, the severe issue of saltwater intrusion will occur in the
Changjiang Estuary, when the monthly mean discharge at Datong is less than the threshold of
11,000 m3/s. To make things worse, the capacity of SNWDP will reach 1600 m3/s in 2030, so the
situation will be exacerbated.

Supplementary Materials: The following are available online at http://www.mdpi.com/2071-1050/12/19/8060/s1,
Figure S1: Monthly distribution of the discharge at Yichang station in each month from 1956 to 2014. The red solid
lines are the fitted results of linear regression, Figure S2: Monthly distribution of the discharge at Hankou station
in each month from 1956 to 2014. The red solid lines are the fitted results of linear regression, Figure S3: Monthly
distribution of the discharge at Datong station in each month from 1956 to 2014. The red solid lines are the fitted
results of linear regression.
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