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A B S T R A C T   

The extreme decline in fluvial sediment discharge and rapid increase in sea level have increased salt marsh 
vulnerability in some of the world’s mega-delta. However, limited research has addressed both the vertical 
accretion and horizontal/lateral progradation of salt marshes induced by anthropogenic activities in recent 
decades. Here, a machine learning-based method for retrieving remote sensing images of the salt marsh along the 
Eastern Chongming Wetland (ECW), the largest wetland in the Yangtze River Delta, was used to monitor salt 
marsh dynamics between 2002 and 2019. The results demonstrate that salt marshes have experienced significant 
expansion, including seaward progradation and accretion with ranges of − 18.5–60.6 m/yr and 0.103–0.178 m/ 
yr, respectively. Nevertheless, the bare mudflat areas adjoining the salt marshes have remained almost un-
changed, while their progradation and accretion have also shown similar trends with the ranges of − 13.3–103.7 
m/yr, and 0.066–0.256 m/yr, respectively. Although there was a 70% reduction in fluvial sediment supply in the 
Yangtze River Delta after the Three Gorges Dam (TGD) began operating in 2003, it is less understood if the 
constant local suspended sediment concentration (SSC) of the estuary could be responsible for supporting enough 
sediment to enable salt marsh and mudflat expansions. Meanwhile, the results showed that the seaward 
expansion of the mudflats provided suitable space for the salt marsh to trap vast amounts of sediment and 
gradually occupy the adjoining mudflat area. The mudflat progradation further provided a larger space for the 
growth of salt marsh vegetation and promoted salt marsh expansion. Moreover, the accretion of the ECW in-
dicates the high resilience of these salt marshes to sea-level rise (SLR). The present work highlights the external 
factors and internal driving forces of the salt marsh evolution process, providing information that can be used by 
communities and coastal managers to conserve and restore the salt marshes in the future.   

1. Introduction 

Estuarine salt marshes, located in the intertidal zone of transition, 
are among the most valuable coastal geomorphic features (Barbier et al., 
2008, 2011; Vuik et al., 2016). As economically significant natural re-
sources on Earth, they provide habitats for fish and wildlife species and 
land resources for social and economic development and provide coastal 
stability against flood risks from land and ocean (Allen, 2000; Costanza, 
2006; Murray et al., 2012). Therefore, salt marsh dynamics have caused 
widespread concern worldwide (Huang et al., 2010; Spencer et al., 2016; 
Murray et al., 2019). 

However, some studies have indicated that land subsidence, sea- 
level rise (SLR), coastal development, and decreased fluvial suspended 

sediment discharge (SSD) have induced large-scale salt marsh degra-
dation (Spencer et al., 2016; Wei et al., 2017; Murray et al., 2019), such 
as in the Mississippi Estuary (Reed, 2002), Chesapeake Bay (Kearney 
et al., 2002), Venice Lagoon (Carniello et al. 2009), and the Yellow Sea 
Estuary (Murray et al., 2014). Specifically, Spencer et al. (2016) pre-
dicted that 78% of global coastal wetlands would be lost given the 
coupling influence between accelerated SLR (110 cm by 2100) and dike 
construction, and this estimate was based on the Dynamic Interactive 
Vulnerability Assessment Wetland Change Model. In Louisiana, Jan-
kowski et al. (2017) determined that 35% of the wetlands in the Mis-
sissippi Delta (SE Louisiana) and 58% of the sites on the Chenier Plain 
(SW Louisiana) may experience erosion and degradation risks at a 
relative SLR rate of 12 ± 8 mm per year. Subsequently, Gu et al. (2018) 
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also indicated that with the impact of the SLR and coastal reclamation, 
severe losses (59%) of salt marshes occurred in China from the 1980 s to 
the 2010 s. In contrast, Kirwan et al. (2016) stated that salt marsh 
vulnerability was overstated and that marsh accretion could exceed the 
relative SLR (10 mm/yr), as higher tidal inundation promotes more 
settling of sediments and hence accretion, where plants further 
contribute by trapping sediments and adding organic matter accretion. 
In the Plum Island Estuary (Massachusetts, USA), Langston et al. (2020) 
demonstrated that salt marshes were not immediately vulnerable to 
erosion despite their inadequate sediment supply and SLR, as sediment 
accumulation contributes to salt marsh elevation (Langston et al., 2020). 
Furthermore, based on the integrated global modeling approach, a 
recent study showed that the global extent of marshes would increase to 
60% of the current area until 2100 if the wetlands have sufficient coastal 
accommodation space and the present level of sediment supply remains 
the same (Schuerch et al. 2018). These different research results high-
light that whether coastal wetland degradation or progradation occurs 
with the relative SLR or reduction of fluvial sediment is still undeter-
mined. Moreover, a few studies have proposed that the local sediment 
fluxes toward salt marshes are crucial for marsh survival (Ladd et al., 
2019; Fagherazzi et al., 2020). However, salt marsh dynamics that 
consist of accretion and progradation changes are determined by mul-
tiple complex effects related to global changes, and there is a need to 
gain greater insight into the marsh’s morphodynamic processes. 

The determination of salt marsh morphodynamics in previous 
studies has mainly been analyzed by field observations (Tang et al., 
2015), digital elevation model construction (Shaw et al., 2016), and the 
creation of hydrodynamic-morphodynamic models (Nardin et al., 
2016). Nevertheless, the above mentioned traditional methods for 
observing mudflats and salt marshes are time-consuming and involve 
labor-intensive measurements. Based on these limitations, it is difficult 
to carry out large-scale and long-term salt marsh landform detection 
(Murray et al., 2012). More specifically, to determine salt marsh dy-
namics in terms of SLR influence, decades of data records are required, 
which is impractical to obtain through tidal flat profile observations. At 

the same time, it is challenging to link the biological factors, hydrody-
namics, and geomorphology of salt marshes through model construction 
because salt marshes are intimately related to mudflats (Carlin and 
Dellapenna 2014). Compared with traditional methods that are expen-
sive and have regional limitations, remote sensing technology is recog-
nized as an efficient tool for monitoring salt marsh morphodynamics 
(Anthony et al., 2015). 

The Changjiang Delta (CJD) (Yangtze River Delta) is one of the 
largest deltas in Asia and has multiple vast estuarine wetlands, where 
the Eastern Chongming wetland (ECW) contains the largest salt marsh of 
the CJD (Chen et al., 1985) (Fig. 1). The ECW receives substantial 
sediment input from the Changjiang River (Wei et al., 2016). In recent 
decades, the ECW has faced large challenges related to riverine sus-
pended sediment discharge (SSD) reductions and SLR impacts (Tian 
et al., 2010; Dai et al., 2014). With the construction of the largest dam in 
the world, the Three Gorges Dam (TGD), finalized in 2003, fluvial 
sediment input has remarkably decreased by over 70% (Dai et al., 2014). 
Furthermore, the coupling effects between the sharp reduction in 
riverine SSD and relative SLR could further induce potential erosion 
risks for the ECW salt marshes (Yang et al., 2020; Leonardi et al., 2021; 
Dai, 2021). Tian et al. (2010) indicated that under the IPCC sea-level rise 
scenarios (0.88 m increase in 2100), 40% of the Chongming wetland 
area would be inundated, especially the Scirpus mariqueter communities 
and mudflats. Li et al. (2014) noted that the salt marshes of the CJD had 
slower seaward migration rates after 2003 due to the decline in the 
fluvial SSD. In addition, utilizing field measurements, Yang et al. (2020) 
found that the salt marshes in the CJD exhibited an accretion trend, 
which could balance the relative SLR. Recent work also indicated that 
the ECW could survive for years to decades under declining riverine SSD 
conditions due to the support of abundant sediment from the submarine 
delta (Yang et al., 2021). 

However, the previous work that referred to the salt marshes in the 
ECW could have one-sided views and not reflect the recognition of all 
the ECW’s salt marsh dynamics, even though they mentioned potential 
impacts to salt marshes from riverine SSD decline and SLR. Specifically, 

Fig. 1. Study area of the Eastern Chongming wetland and distribution of the salt marsh areas and mudflat areas.  
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the work analyzing monthly elevation data over 8 years (2005–2013) 
based on three fixed stations in one profile at the center of the ECW was 
too short; thus, it was limited in its representation of the whole ECW salt 
marsh response to SLR (Yang et al., 2020). Additionally, two isobaths of 
− 2 m and − 5 m collected in 1997, 2002, and 2010 as documented in 
Yang et al. (2021) may also not adequately reflect the variations in the 
salt marshes because of the suitable growth elevations of salt marshes 
above 2 m (Ge et al., 2015a; Ge et al., 2015b). To date, there is a great 
obstacle to obtaining long-term elevation data in salt marshes, which are 
key to exploring the relationship between salt marsh variations and SLR 
(Murray et al., 2012). The erosion or accretion of salt marshes in 
response to SLR and insufficient sediment not only is recognized as a 
long-term process due to sediment settling lag/scour lag effects but also 
depends on local hydrogeomorphological conditions (Anthony and 
Dobroniak, 2000; Fagherazzi et al., 2020). Therefore, it is essential to 
have a comprehensive understanding of the ECW’s response to external 
forcings based on long-term systematic data. 

Little information is available on how the abovementioned forcings 
impact ECW salt marsh dynamics and the potential couplings between 
salt marshes and mudflats in this region. In this study, we try to fill gaps 
in monitoring the successive dynamics of the salt marsh-mudflat system 
in the ECW to determine the vegetation-geomorphology interaction 
process based on long-term data by an effective method. Therefore, new 
machine learning approaches that interpret large numbers of remote 
sensing images and then combine them with the 17-year hourly tidal 
elevations to construct a conceptual tidal flat model were used in this 
work. Utilizing this comprehensive methodology with data collection on 
decadal salt marsh dynamics, the main aim was to (1) detect the long- 
term dynamics of the salt marshes of the ECW; (2) determine the main 
driving forces of salt marsh dynamics; and (3) discriminate couplings 
between salt marsh dynamics and variations in the mudflats. This work 
provides a vital foundation for managing risk in global mega-deltas, as 
they respond to similar environmental effects. 

2. Materials and methods 

2.1. Study area 

The Changjiang Estuary (CJE) is an irregular semidiurnal tidal es-
tuary, and its average daily tidal range is 2.67 m (Dai et al., 2013a). The 
subtropical monsoon climate of this region results in significant seasonal 
wind direction variations, with wind directions of NW-NNW in winter 
and of SSE-S in summer and average wind speeds of 4.5–7.2 m/s (Yun, 
2004). The wind in the CJE is the dominant factor affecting wave ac-
tivities, including wave directions and heights. Yun (2004) proposed 
that the average wave height at the Sheshan station could reach 0.9 m 
based on long-term observation records. 

The ECW is one of the most extensive wetlands in the CJE, located in 
the slow-flowing zone between the North Branch and the North Channel 
of this estuary (Dai et al., 2018a) (Fig. 1). The suspended sediment 
concentration (SSC) of the surrounding area is approximately 0.42 kg/ 
m3 (Chen et al., 2004). As a result of Chongming Island shadow effects, 
the ECW is well developed and has continued to expand seaward for the 
past decades (Wei et al., 2017), with a width of more than 7 km at the 
tip, featuring a vegetated salt marsh and mudflat. Fine sand (median 
diameter of 8–15 μm) and mud are the major components of the surficial 
sediments in this area (Yan et al., 2011). There are three primary 
vegetation communities in this salt marsh zone: Phragmites australis, 
Scirpus mariqueter, and Spartina alterniflora (Ge et al., 2015a; Ge et al., 
2015b). Phragmites australis and Scirpus mariqueter are native species, 
while Spartina alterniflora was introduced in the eastern Chongming flat 
in 1995 and has rapidly spread due to its extraordinary competitive 
ability (Yuan et al., 2011). 

In addition, considering the distinct regional features in the ECW, 
this work divided the whole wetland into three zones to describe the 
local wetland dynamics in detail (Fig. 1). Specifically, the South Zone 

(SZ) of the ECW has steeper slopes and small salt marshes and mudflats. 
The East Zone (EZ), with a gentle slope, has a large area of salt marshes 
and mudflats, whereas the regional features of the North Zone (NZ) are 
between those of the SZ and EZ. 

2.2. Data collection 

According to the Worldwide Reference System, one Landsat image 
(path 118, Row 38) completely covers Chongming Island (Fig. 1). A total 
of 161 Landsat images with cloud cover < 50% from 2002 to 2019 were 
obtained from the Google Earth Engine (GEE), including Landsat − 5 TM 
(2002–2011), − 7 ETM (2002–2003), and − 8 OLI images (2013–2019) 
(Table 1). These data are identified as the standard Level 1 terrain- 
corrected (L1T) products that have been revised through the Landsat 
ecosystem disturbance adaptive processing system (LEADAPS) and 
Landsat surface reflectance code (LaSRC) (Vermote et al., 2016). All of 
these L1T products are recognized as being high quality and ready-to- 
use (Chen et al., 2017). 

The hourly tidal level data from 2002 to 2019 at Hengsha station 
(using the theoretical minimum tidal surface as the benchmark) were 
acquired from the China Oceanic Information Network (https://www.co 
i.gov.cn/) and applied to map the tidal mudflats under different tidal 
levels. The annual runoff and SSD at Datong station (the most down-
stream hydrologic station in the Changjiang River) were obtained from 
the Changjiang Water Resource Committee (http://www.cjw.gov.cn/ 
zwzc/bmgb/nsgb). The wave direction data from 1979 to 2018 were 
downloaded from the European Centre for Medium-Range Weather 
Forecasts (ECMWF) (https://apps.ecmwf.int/datasets/data/interim 
-full-daily/levtype=sfc/). These hydrological data are considered the 
main driving factors of tidal mudflat evolution. 

2.3. Methods 

2.3.1. Reference sample selection 
To explore the evolution of the salt marshes and mudflats, we cate-

gorized the Eastern Chongming wetland as salt marsh, mudflat, and 
water. The annual Landsat images with the lowest cloud cover were 
selected to generate training samples using visual interpretation. First, 
we built three layers in GEE and identified them as salt marsh areas, 
mudflat areas, and water areas. Then, we manually selected dozens of 
regions of interest (ROIs) in each layer and generated 500 random points 
by the ’randomPoint’ command in GEE. In this study, 3706 ROIs were 
selected, and 25,500 random sample points were generated, including 
1281 salt marsh samples (8500 sample points), 1390 mudflat samples 
(8500 sample points), and 1035 water area samples (8500 sample 
points) (Table 2). Seventy percent of these sample points were applied 
for training, and the remaining points were applied for the accuracy 
assessment. 

2.3.2. Landsat data processing 
The pixel-based supervised random forest (RF) algorithm was used to 

discriminate the different landforms in the Eastern Chongming wetland. 
Based on the GEE platform, Landsat data processing is divided into three 
steps: (1) selecting and preprocessing Landsat images, (2) conducting 
the RF algorithm classification, and (3) identifying different landform 
area statistics and sketching the edges of the salt marshes and mudflats 
(Fig. 2). 

The Three Gorges Dam (TGD), the largest hydrological project in the 

Table 1 
Statistical information for the Landsat image collections.  

Period Sensor Time Image Count 

2002–2011 Landsat 5 TM 2002/1/1–2011/12/31 78 
2002–2003 Landsat 7 ETM 2002/1/1–2003/5/31 13 
2013–2019 Landsat 8 OLI 2013/4/11–2019/12/31 70  
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world, was constructed in 2003, and caused a sharp decrease in fluvial 
SSC (Dai et al., 2013b; Dai et al., 2018a). To examine the ECW mor-
phodynamics, all available Landsat images from 2002 to 2019 were 
collected for this study. The images in 2002 represent the scenario with 
unchanged fluvial SSC before TGD operation. As clouds and cloud 
shadows directly affect Landsat image interpretation, we further masked 
these distractions by using the Fmask algorithm of the GEE and recon-
structed more precise observations from the Landsat data (Zhu and 
Woodcock, 2012; Jia et al., 2021). In addition, various landforms have 
different spectral characteristics (Huete et al., 2002; Jiang et al., 2015). 
To effectively classify these spectral characteristics, four water and 
vegetation indices were applied, such as the normalized difference 
vegetation index (NDVI) (Tucker, 1979), enhanced vegetation index 
(EVI) (Huete et al., 2002), land surface water index (LSWI) (Xiao et al., 
2004) and modified normalized difference water index (mNDWI) (Xu, 
2006). 

NDVI =
ρNIR − ρRED

ρNIR + ρRED
(1)  

EVI = 2.5 ×
ρNIR − ρRED

ρNIR + 6ρRED − 7ρBLUE + 1
(2)  

LSWI =
ρNIR − ρSWIR

ρNIR + ρSWIR
(3)  

mNDWI =
ρGREEN − ρSWIR

ρGREEN + ρSWIR
(4)  

where ρBLUE, ρGREEN, ρRED, ρNIR, ρSWIR represent the pixel values of the blue 
(B2), green (B3), red (B4), near-infrared (B5), and shortwave infrared 
(B6 and B7) bands of the Landsat images, respectively. 

Then, 11 bands (seven spectral reflectance bands and four index 
bands) constituted the input datasets of this RF algorithm to boost the 
between-class separability of the various land cover types. 

At the same time, on the GEE platform, there are six input parameters 
to define RF classifiers: (1) the number of classification trees to create 
per class, (2) the number of variables per split, (3) the minimum size for 
a terminal node, (4) the fraction of input to bag per tree, (5) out-of-bag 
mode, and (6) random seed variable for decision tree construction (htt 
ps://code.earthengine.google.com/). Breiman (2001) proposed that 
the overall accuracy of the classifications in the RF algorithm depends 
on the number of trees, while more decision trees also increase the 
processing time. Considering the overall accuracy and classification 
processing duration, we selected the 100 decision trees as the optimum 
value for this classification, and other parameters were defaults. 

The postprocessing of Landsat images mainly included two tasks: 
vectorization and edge line extraction. The discriminated Landsat im-
ages were first vectorized to calculate the salt marsh area, mudflat area, 
and water area. Subsequently, utilizing the ’canny’ operators, we further 
extracted the edge lines of the salt marshes and mudflats. Finally, we 
exported all the datasets and images that were required for follow-up 
statistics. All of the processing procedures were programmed on the 
GEE platform, which effectively improves remote sensing image pro-
cessing efficiency. 

2.3.3. Estimates of salt marsh/mudflat area and elevation 
The salt marshes are located are a higher position in the wetland and 

are rarely submerged by high tide levels, so their areas are minimally 
affected by tidal level fluctuations (Fig. 3). Therefore, the salt marsh 
area was directly obtained from the Landsat image interpretation. 
Subject to Landsat image limitations, continuous time series data with 
the mudflat-exposed area at low tide levels are challenging to acquire 
(Jia et al., 2021). Considering that the mudflat-exposed area is sensitive 
to water level fluctuations, we attempted to explore their relationship 
(Supplementary Fig. 1). The results indicated that the rating curves 
between the exposed area and the tidal levels could be well expressed by 
the 2nd degree polynomial equations, which are as follows: 

Table 2 
Sample numbers of the three land cover types.  

Year Numbers of ROI 
(salt marsh) 

Numbers of ROI 
(mud flat) 

Numbers of ROI 
(water area) 

2002 65 72 42 
2003 62 84 45 
2004 65 77 56 
2005 65 80 70 
2006 77 80 70 
2007 76 75 68 
2008 76 82 65 
2009 84 86 68 
2010 85 78 64 
2011 78 91 65 
2013 76 88 63 
2014 89 89 63 
2015 81 86 63 
2016 77 79 57 
2017 83 80 58 
2018 75 80 61 
2019 67 83 57 
Total 1281 1390 1035  

Fig. 2. Workflow of wetland extraction using Landsat images.  

Fig. 3. Schematic of salt marsh and mudflat distributions in the Eastern 
Chongming wetland. MHWS: mean high water springs; MHWN: mean high- 
water neaps; MSL: mean sea level; MLWN: mean low water neaps; and 
MLWS: mean low water springs. 
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sh = fn(h) = anh2 + bnh+ cn, n = 2002, 2003,⋯2019 (5)  

where h is the tidal level corresponding to Landsat image exposure time 
and sh is the exposed area at the corresponding tidal level.an,bn, and cn 
present the annual fit coefficients in a specific year, and n represents the 
specific year. Subsequently, utilizing the quadratic equations, we further 
calculated the mudflat exposed area at the mean low water spring 
(MLWS = 0.5 m). The total wetland area (salt marsh area + mudflat 
area) had a similar connection with the tidal level (Supplementary 
Fig. 2). 

Additionally, according to the relation between the wetland area and 
tidal levels, salt marsh and mudflat accretion variations from 2002 to 
2019 were further recalculated. Here, the original locations of the salt 
marsh seaward edges with a tide level of 2.75 m and mudflat seaward 
edges with a tide level of 2.0 m in 2002 were used as the benchmarks for 
detecting the vertical elevation changes of the salt marshes and mud-
flats, respectively. The calculated equation can be described as follows: 

ΔH = fn
− 1(sn+1) − fn

− 1(sn) (6)  

Hn =
∑n

2002
(ΔH) (7)  

where ΔH is the calculated elevation variation based on the previous 
area of salt marsh/mudflat, sn is the salt marsh/mudflat area in a specific 
year, and fn is the relation formula between tidal level and total wetland 
area/mudflat area in a specific year. Hn is the accumulated salt marsh 
elevation variation from the original year of 2002 to 2019. 

Notably, the local areas and vertical accumulated changes in the NZ 
and EZ were also estimated by these equations, whereas SZ was not 
involved in the calculation due to frequent recessions in this area 
(Supplementary Figs. 3–6). 

2.3.4. Digital shoreline analysis system (DSAS) 
The DSAS, a software extension for ArcGIS, provides an automated 

method for detecting multiple historical shoreline changes (https://cod 
e.usgs.gov/cch/dsas). In this study, the edge line changes in the salt 
marshes and mudflats in the three zones were calculated by the DSAS to 
indicate the lateral evolution of wetlands. Specifically, the edge lines of 
the salt marshes and mudflats in 2002 were divided into 200–300 sec-
tions with a 50 m distance. Then, the interannual edge line migrations of 
each transect were automatedly generated by DSAS. 

2.3.5. Accuracy assessment 
Results are affected by remote sensing resolution and data process-

ing; thus, error analysis is necessary to verify the accuracy of the results 
(Lawrence and Wrlght, 2001). For the Landsat image classification, error 
matrices with independent validation samples were employed to assess 
the performance of the RF classification algorithm (Liu et al., 2016). 
Producer accuracy, user accuracy, overall accuracy, and kappa coeffi-
cient (k) were the four indicators used in this accuracy assessment (Jia 
et al., 2018). Table 3 shows the annual accuracy assessment for the 
different land cover types obtained through the RF method using test 
data, indicating a high level of confidence in the different land cover 
types of the RF classification in this work. Specifically, the overall 
annual accuracies ranged between 0.971 and 0.997 for all observation 
years, and these kappa coefficients were higher than 0.96. Additionally, 
the three classes of producer and user accuracies were over 0.9, and 
most of these accuracies were 0.98 (Table 3). 

The other deviations occurred based on the original data post-
processing, including the fitting curve and elevation calculation. Sup-
plementary Figs. 1 and 2 show the annual fitting curves between the 
mudflat areas/wetland areas and tidal levels with high correlation, as 
most of the correlation coefficients of the fitting equations were over 
0.95. Considering the deviation of this linear interpolation method, we 
constructed a 95% confidence interval of our results. 

Table 3 
Confusion matrix for assessing the performance of the RF machine learning 
algorithm.    

Water Salt 
marsh 

Tidal 
flat 

Overall 
accuracy 

Kappa 
coefficient 

2002 Producer 
accuracy 

0.995 1 0.974 0.991 0.988 

User’s 
accuracy 

0.973 0.995 0.996  

2003 Producer 
accuracy 

0.991 0.993 0.952 0.979 0.969 

User’s 
accuracy 

0.982 0.974 0.986  

2004 Producer 
accuracy 

1 0.991 0.996 0.995 0.993 

User’s 
accuracy 

1 0.994 0.987  

2005 Producer 
accuracy 

1 0.993 0.993 0.995 0.993 

User’s 
accuracy 

1 0.995 0.989  

2006 Producer 
accuracy 

1 0.991 0.993 0.994 0.991 

User’s 
accuracy 

1 0.995 0.986  

2007 Producer 
accuracy 

1 0.993 0.984 0.992 0.988 

User’s 
accuracy 

0.991 0.993 0.989  

2008 Producer 
accuracy 

1 0.997 0.989 0.995 0.992 

User’s 
accuracy 

1 0.993 0.996  

2009 Producer 
accuracy 

1 0.995 0.967 0.988 0.982 

User’s 
accuracy 

0.995 0.979 0.996  

2010 Producer 
accuracy 

1 0.979 0.934 0.971 0.961 

User’s 
accuracy 

0.979 0.97 0.965  

2011 Producer 
accuracy 

1 0.988 0.978 0.988 0.981 

User’s 
accuracy 

1 0.986 0.981  

2013 Producer 
accuracy 

0.995 0.981 0.941 0.973 0.964 

User’s 
accuracy 

0.983 0.968 0.973  

2014 Producer 
accuracy 

1 0.997 0.996 0.997 0.995 

User’s 
accuracy 

0.995 1 0.996  

2015 Producer 
accuracy 

1 0.993 0.973 0.988 0.98 

User’s 
accuracy 

0.995 0.984 0.989  

(continued on next page) 
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3. Results 

3.1. Area changes in the salt marshes and mudflats 

Fig. 4 shows the annual area changes in the salt marshes and mud-
flats in the ECW between 2002 and 2019, including the local area var-
iations in the NZ and EZ. The original salt marsh area of the ECW in 2002 
was approximately 38 km2 (Fig. 4). In 2019, this area expanded to 102 
km2, which was nearly three times that in 2002, indicating that the salt 
marshes of the ECF exhibited a remarkable expansion trend with an 
increasing rate of 3.818 km2/yr (Fig. 4A). Similarly, simple trend ana-
lyses of the NZ and EZ local areas from 2002 to 2019 also clearly 

indicated interannual salt marsh expansion with rates of 2.641 km2/yr 
and 0.978 km2/yr, respectively (Fig. 4B). This result reflected that the 
growth rate of the NZ salt marsh was more significant than that of the EZ 
salt marsh. 

At the same time, the total mudflat area in the ECW mainly fluctu-
ated, with a total area of approximately 84.9 km2 over the past decades 
(Fig. 4C). However, the NZ and EZ mudflats displayed opposite devel-
opment processes from 2002 to 2019. The annual NZ mudflat area has 
shown a gradually increasing trend with an average growth rate of 
0.922 km2/yr, whereas the EZ mudflat has presented a slightly 
decreasing trend. The mudflat erosion rate in the EZ reached 0.738 km2/ 
yr (Fig. 4D). 

3.2. Lateral migration of salt marshes and mudflats 

The migrations of salt marshes and mudflat margins effectively 
reveal their lateral changes (Fagherazzi et al., 2020). Intuitively, the salt 
marshes and mudflats in the ECW exhibited gradual seaward move-
ments (Supplementary Fig. 7). Fig. 5 shows the salt marsh and mudflat 
lateral migrations during 2002–2019 in the three different zones. Spe-
cifically, the NZ salt marsh was a rapid deposition area with annual 
seaward expansion rates of 60.6 m/yr. The NZ mudflat displayed more 
significant expansion than the salt marsh, with an average seaward 
migration rate of 103.7 m/yr (Fig. 5A). The total migration distances of 
the NZ salt marshes and mudflats were over 1000 m and 1700 m, 
respectively, between 2002 and 2019. Moreover, similar lateral migra-
tions of salt marshes and mudflats were detected in the EZ (Fig. 5B); the 
salt marshes had a seaward expansion rate of 39.5 m/yr, and the mud-
flats had a rate of 36 m/yr. The expansion rate of the mudflats was 
slightly slower than that of the salt marshes. Despite the widespread 
expansion of wetlands in the NZ and EZ, the SZ wetlands showed a slight 
landward retreat (Fig. 5C). The annual recession rates of salt marshes 
and mudflats in the SZ were 18.5 m/yr and 13.3 m/yr, respectively. 

Furthermore, the mudflats were divided into four areas: the 

Table 3 (continued )   

Water Salt 
marsh 

Tidal 
flat 

Overall 
accuracy 

Kappa 
coefficient 

2016 Producer 
accuracy 

1 1 0.989 0.996 0.993 

User’s 
accuracy 

0.995 0.995 1  

2017 Producer 
accuracy 

0.995 1 0.993 0.996 0.991 

User’s 
accuracy 

0.995 0.995 1  

2018 Producer 
accuracy 

1 0.997 0.993 0.996 0.993 

User’s 
accuracy 

0.995 0.997 0.996  

2019 Producer 
accuracy 

0.995 0.962 0.979 0.975 0.969 

User’s 
accuracy 

1 0.984 0.943  

Fig. 4. Annual salt marsh and mudflat area variations from 2002 to 2019. A. Total salt marsh area; B. NZ and EZ salt marsh areas; C. total mudflat area; D. NZ and EZ 
mudflat areas. 
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southeastern area, the eastern area, the northeastern Area, and the 
northern area. The width of the northern area mudflats significantly 
increased after 2005, while the widths of the other three mudflat areas 
exhibited fluctuations over the years (Fig. 6A, 6B). Fig. 6C indicates that 
the annual decrease rates of mudflat widths in the southeastern area and 
eastern area reached 26.9 m/yr and 21 m/yr, respectively. At the same 

time, the mudflat widths of the northeastern area and northeastern area 
gradually expanded from 2002 to 2019 at 30.5 m/yr and 49.9 m/yr, 
respectively (Fig. 6C). Overall, the mudflats exhibited explicit, distinct 
variations that changed from sediment erosion to deposition from south 
to north. 

Fig. 5. Annual salt marsh and mudflat margin migrations from 2002 to 2019 in different zones; A. north zone; B. east zone; and C. south zone.  

Fig. 6. Mudflat width variations during 2002–2019. A. The locations and serial numbers of transects; B. annual mudflat width of different transects; and C. annual 
average width statistics for the different zones. 
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3.3. Elevation changes in the salt marshes and mudflats 

Elevation changes are imperative indicators of salt marsh and 
mudflat morphodynamics. The NZ salt marshes and mudflats presented 
significant accretion trends, with significant levels reaching 0.97 and 
0.95 during 2002–2019, respectively. The accumulated elevation 
changes in the salt marshes reached almost 3 m from 2002 to 2019, and 
the average annual elevation change rate was 0.178 m/yr (Fig. 7A). 
Additionally, the mudflat deposition in the NZ was higher than that of 
the salt marsh, which had an accretion rate of 0.256 m/yr (Fig. 7A). 

In the EZ, the accretion rates were reduced significantly. Between 
2004 and 2008, the EZ salt marsh elevation changes occurred due to 
erosion. Subsequently, the gradual deposition trend recovered after 
2008, with an annual increase of 0.103 m/yr (Fig. 7B). The accumulated 
salt marsh elevation increased by approximately 1 m in the past decade. 
Moreover, the EZ mudflat exhibited a similar elevation evolution pro-
cess. Nevertheless, its accretion was much lower, with an average 
accumulation of 0.066 m/yr from 2005 to 2019 (Fig. 7B). These results 
indicate that of the wetlands, the NZ wetlands had the most remarkable 
accretion zone with the maximum lateral migration and vertical depo-
sition rates. 

4. Discussion 

4.1. Sediment supply 

Tidal flat morphodynamics are controlled by a combination of in-
fluences, such as tidal range, relative SLR, marsh elevation within the 

tidal frame, and sediment source supply (Lovelock et al. 2015; Kirwan 
et al., 2016; Crosby et al., 2016). 

A sufficient sediment supply is one of the important drivers sup-
porting salt marsh and mudflat growth (Fagherazzi et al., 2020). The 
ECW has multiple sediment sources, including fluvial sediment and 
longshore sediment transport (Yang et al., 2020; Leonardi et al., 2021). 
Fig. 8A indicates that the fluvial suspended sediment load at the Datong 
station had a sharply decreasing trend (27.99 × 106 t/yr) between 2003 
and 2008 because of TGD operations (Dai et al., 2016b), even though the 
discharge remained almost unchanged (Fig. 8A). Moreover, between 
2008 and 2019, the SSD was relatively stable at a mean of approximately 
121.4 × 106 t/yr (Fig. 8A). Obviously, the SSD reduction still induced 
the expansion of the salt marshes and mudflats in the ECW, which could 
be seen from the negative relationship between them (Fig. 8B). Never-
theless, a short-term vertical decreasing trend occurred in the EZ salt 
marshes and mudflats from 2003 to 2008 (Fig. 7B), which was attrib-
utable to the decreasing fluvial SSD. Although the fluvial SSD reduction 
had little impact on ECW development in the long term, it hampered 
local mudflat expansion. 

Fig. 8C reveals that the annual SSC in the estuary at Sheshan station, 
near the ECW, was approximately 0.77 kg/m3 from 2009 to 2017, and 
this value remained almost unchanged (Fig. 8C). This result explicitly 
demonstrates that even if the fluvial sediment underwent a sharp 
decline, the constant local SSC could still support salt marsh develop-
ment. This finding is in line with the theory that sediment availability is 
the critical factor controlling salt marsh expansion and survival 
(Fagherazzi et al., 2020). 

4.2. Effects of local conditions 

An estuary’s regional morphology significantly affects sediment 
transport dynamics and wetland evolution (Dai et al., 2018a; Dai, 2021). 
The ECW is located in a complex tidal environment. Its NZ is near the 
North Branch of the CJD, and its SZ is near the North Channel. Limited 
by the regional morphology, the North Branch only receives 1% of the 
runoff flows from the Changjiang River but accepts 25% of the total tidal 
prism (Chen and Chen, 2003). As a flood-dominated channel, it is pri-
marily controlled by estuarine hydrodynamics and mainly receives 
sediment from the sea (Dai et al., 2016a). At the same time, the mouth of 
the North Branch is recognized as one of the highest SSC zones in the 
CJD, and a substantial amount of sediment is deposited in this area (Dai 
et al., 2018b). Therefore, flood-dominated hydrodynamics and sufficient 
sediment supply are responsible for promoting northern and eastern 
wetland deposition (Leonardi et al., 2021; Dai, 2021) (Fig. 9A). 

In contrast to the North Branch, the North Channel is dominated by 
the ebb tide-dominated current (Mei et al., 2018). The SZ is constrained 
by strong hydrodynamic conditions between the flood-dominated 
channel and ebb-dominated channel and thus faces a large obstruction 
to expansion (Fig. 9A). In addition, waves in Sheshan generally are in 
southern or southeastern directions in spring and summer and northern 
or northeastern directions in autumn and winter (Yun, 2004; Wu and 
Zhu, 2010) (Fig. 9B). The southerly wave directly erodes the mudflats of 
the SZ in the ECW due to the open surrounding sea areas. Therefore, the 
field measurement results displayed the highest slope in the SZ at 1%, 
and the EZ and NZ slopes were 0.08% and 0.1%, respectively (Yang 
et al., 2002), which could be attributed to the local actions of tidal 
currents and wind-driven waves. In addition, the ebb-dominated cir-
cumstances in the North Channel carry the sediment away from the tidal 
flats (Wu and Zhu, 2010; Liu et al., 2020). The strong hydrodynamic 
environment and insufficient sediment supply are remarkable obstruc-
tions to SZ expansion. On the other hand, the SZ has a steep slope and 
narrow mudflat distribution and is unable to withstand wave and tide 
current dynamics, which force the mudflats to erode and become 
steeper. From this increase in slope steepness, the margin between the 
salt marsh and mudflat platforms becomes increasingly unstable. 
Eventually, this process leads to salt marsh retreat and landward 

Fig. 7. Accumulated elevation changes in the salt marshes and mudflats in the 
NZ and EZ from 2002 to 2019. 
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migration (van de Koppel et al., 2004). 

4.3. Sea-level rise 

Existing knowledge reveals that the sustainability of wetlands is now 

severely threatened by the increase in SLR due to global climate change 
(Rizzetto and Tosi 2011; Kirwan and Megonigal, 2013; Linhoss et al., 
2015). Globally, many studies have demonstrated that marsh-mudflat 
ecosystems are in danger of disappearing if they cannot accrete eleva-
tion at rates that match SLR (Lovelock et al. 2015; Crosby et al., 2016). 

Fig. 8. A. Annual variations in discharge and suspended sediment load at Datong station from 1985 to 2019. B. The relations between salt marsh/mudflat areas and 
the fluvial sediment load; C. the annual suspended sediment concentrations at Sheshan station from 2009 to 2017 (the data are from (Yang et al., 2020)). 

Fig. 9. A. Divergence of flood and ebb currents in the surrounding areas of the Eastern Chongming Wetland; B. the seasonal wave direction distributions at She-
shan station. 
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One crucial index assessing salt marsh vulnerability is that which com-
pares salt marsh surface elevation changes with regional sea-level var-
iations (Horton et al., 2018). Recent research has indicated that the rate 
of global mean SLR presents an accelerating trend, with a rate that 
increased from 1.4 mm/yr in 1880–1993 to 2.9 mm/yr in 1993–2010 
(Church and White 2011). In addition, influenced by the high forcing 
and unfavorable ice sheet dynamics, the SLR might exceed 2 m in many 
regions (Kopp et al., 2017). 

Here, we assessed the relative SLR in the CJD (using the theoretical 
minimum tidal surface as the benchmark). The mean sea level in the CJD 
exhibited an increasing trend with an increasing rate of 4.7 mm/yr, 
despite the interannual fluctuations (Fig. 10). Furthermore, Wang 
(2010) determined that the subsidence rate in the ECW was approxi-
mately 5.2 mm/yr in recent years. Therefore, the relative SLR is 
approximately 9.9 mm/yr because of the mean SLR and subsidence rate 
coupling effects. Based on the results related to salt marsh and mudflat 
accretions, we found that the annual accretion in the EZ mudflat was 66 
mm/yr, excluding the SZ erosion (Fig. 7). Nevertheless, the local 
wetland subsidence process, including sediment compaction and 
organic matter decomposition, are not considered here in this remote 
sensing technology. It is notable that although the local wetland subsi-
dence process could have contributed to lowering the rates of elevation 
change, subsidence rates were much smaller than the ECW accretion 
rate. Yang et al. (2020) also proposed an accretion rate of 33–49 mm/yr 
in the ECW. Although the estimated annual accretion rate was greater 
than that in the previous study proposed by Yang et al. (2020), it could 
be concluded that the enhancement of the salt marshes in the ECW was 
remarkably higher than the relative SLR in the ECW, reflecting that 
these areas are sufficiently resilient to the SLR threat. 

4.4. Effects of human intervention 

In the ECW, a series of artificial projects, including embankment 
construction and vegetation plantations, have been conducted in recent 
decades to accelerate marsh sedimentation (Luo et al., 2017). Fig. 11 
shows that several large-scale reclamation projects were constructed in 
the ECW during 1999–2019. The embankments interrupted the tidal 
current, decreased the water flow velocity, and restricted the sediment- 
carrying capacity, thus accelerating wetland sedimentation (Li et al., 
2011). Subsequently, Lu and Jiang (2013) also identified that the ECW 
underwent a remarkable expansion in the first three years following the 
construction of the embankments in 1999 and then gradually recovered 
to equilibrium conditions. The results indicate that mudflat areas in 

2002–2003, 2010, 2013, and 2015 appeared to increase (Fig. 4C), which 
confirms that these projects dramatically promoted mudflat expansion 
in the following 1–2 years (Fig. 11). 

Additionally, with their immense capacity for diminishing flow ve-
locity and trapping sediment, salt marsh vegetation is considered one of 
the driving factors of wetland development (Kirwan and Megonigal, 
2013). Therefore, Spartina alterniflora was artificially introduced in 2001 
and 2003 to promote the development and stability of the ECW (Han 
et al., 2009). Furthermore, the cultivation of Spartina alterniflora in the 
ECW expanded from 33 ha in 2000 to 916 ± 131 ha in 2008, Phragmites 
australis increased to 206 ± 25 ha, and Scirpus mariqueter decreased from 
1660 ha to 963 ± 137 ha from 2000 to 2008 (Ge et al., 2015a). Because 
of its prominent competitive advantage, Spartina alterniflora rapidly 
spread and became an invasive grass species in the Chongming wetland, 
resulting in part of the mudflat areas in the ECW being occupied by salt 
marshes (Ge et al., 2015a; Ge et al., 2015b). Eventually, the ECW 
reached an equilibrium state, in which the salt marshes continuously 
expanded and the mudflats remained stable from 2002 to 2019. 

Another effect of ECW evolution is the distribution of salt marsh 
vegetation (Zhang et al., 2020). Based on remote sensing technology, Liu 
et al. (2020) indicated that the invasive species Spartina alterniflora is 
mainly distributed in the northern and northeastern ECW, while the 
native species Scirpus mariqueter and Phragmites australis are in the 
eastern and southern ECW. Obviously, as a result of its stronger 
competitive capacity and wider ecological niche, the Spartina alterniflora 
has higher expansion rates than those of the native species (Huang et al., 
2007; Zhu et al., 2012). On the other hand, through field measurements, 
Li and Yang (2009) found that the annual sediment trapping rate of 
Spartina alterniflora was 220.6 ± 172.7 g/m2 in the CJD, which was 
remarkably higher than that of Phragmites australis (64.9 ± 38.1 g/m2) 
and Scirpus mariqueter (31.6 ± 10.0 g/m2). This scenario also explains 
the generation of differences in the NZ and EZ. 

4.5. Dynamic spatial patterns of the salt marshes and mudflats 

The three zones of the ECW showed different salt marsh and mudflat 
dynamics from 2002 to 2019, corresponding to three evolution spatial 
patterns (Fig. 12). Generally, salt marsh and mudflat development pre-
sented similar spatial evolution patterns with deposition in the northern 
and eastern areas and erosion in the south area (Fig. 12). Specifically, 
both the NZ salt marshes and mudflats were in a rapid expansion stage. 
In comparison to salt marsh accretion, mudflat accretion was much 
higher, including lateral expansions and vertical accumulations 
(Fig. 12A). The EZ salt marsh and mudflat dynamics experienced stable 
progradation processes from 2002 to 2019. The lateral expansion rates 
of the salt marshes and mudflats were similar, while the vertical mudflat 
deposition was slightly weaker than that of the salt marshes (Fig. 12B). 
In contrast, the SZ salt marshes and mudflats continuously eroded, 
which gradually induced their edges to retreat landward (Fig. 12C). 
Thus, this dynamic could be identified as a slight erosion spatial pattern. 

Such spatial patterns reasonably summarize the salt marsh devel-
opment dynamics. To analyze the external contributors, salt marsh 
progradation could be linked to the sediment budget of the entire 
wetland (Ganju et al., 2017). Sufficient sediment and moderate hydro-
dynamics are prerequisites for marsh progradation, such as in the NZ salt 
marsh. Otherwise, a marsh would risk retreat, which is similar to that 
which occurred in the SZ salt marsh. Based on internal mechanisms, 
there is a potential balance between salt marsh and mudflat. The salt 
marshes continuously occupied the mudflat areas and forced the mudflat 
margins to migrate seaward. At the same time, the mudflat seaward 
expansion also provided the salt marsh greater area to further accelerate 
salt marsh growth. Conversely, mudflat erosion would have restricted 
salt marsh development due to a lack of space for expansion. 

Furthermore, based on the salt marsh dynamic models proposed by 
Fagherazzi et al. (2020), this study further forecasts the fate of the ECW 
in the future. Notably, in the NZ, the mudflats have a higher deposition 

Fig. 10. Annual sea levels at the Hengsha tidal station between 2002 and 2019, 
and the elevation datum are the theoretical minimum tidal surfaces. 
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rate than the salt marshes, providing enough space for salt marsh pro-
gradation. Nevertheless, mudflat progradation will be limited by the 
local morphology and hydrodynamics and eventually reach a dynamic 
balance. Then, mudflats will feedback the salt marshes, affecting their 
continual progradation and even causing them to retreat. However, in 
the EZ, the seaward migration and accretion of the salt marshes were 
greater than those of its adjacent mudflat, and the mudflats were in the 
erosion stage. Although the large mudflat area in the EZ offered suffi-
cient space for salt marsh progradation, the slow accretion of the 
mudflats would likely gradually increase wave and tide flow impacts 
and restrict marsh development. In addition, impacted by wave hydro-
dynamics, the SZ salt marshes and mudflats have experienced landward 
retreat, which increases the risk of coastal erosion. 

4.6. Uncertainty analysis 

Multiple remote sensing images and measured tidal levels were 
combined to build annual fitted linear equations, and this method 
effectively exhibited the long-term and successive morphological evo-
lution of the EDW. Nevertheless, there are still some uncertainties in this 
measurement, including data source errors and processing errors. Spe-
cifically, the data source error primarily refers to the 30 m spatial res-
olution of Landsat images, which would induce a pixel error of 9X10-4 

km2. Therefore, selecting a large study area is a precondition for 
decreasing this data source error (Okin and Gu, 2015). The results show 
that the EDW area is over 100 km2, remarkably larger than the pixel 
error, which would effectively decrease the impact from the data source 
error. At the same time, although we utilized the measured tidal level to 
construct the relationship between the tidal flat areas and tidal levels, 
due to the topographic influence, the tidal levels in the different regions 
of the EDW were not entirely consistent at the same moment. This sce-
nario affected the statistical relations between areas and tidal levels and 
then further influenced tidal flat area acquisition. Although the annual 

fitting curves between the tidal flat areas and tidal levels had high 
correlation coefficients (R2 > 0.95), deviations remained between the 
fitted tidal flat areas and the actual values. 

Overall, compared with the results from the few and intermittent 
Landsat images, the results from numerous and serial Landsat images 
applied through machine learning provided increased accuracy and 
decreased randomness. This method can precisely describe the 
morphological evolution process in the ECW in recent decades. 
Furthermore, this work also demonstrated the long-term interaction of 
vegetation-geomorphology between salt marshes and mudflats in the 
ECW, which is difficult to detect through episodic field measurements. 

5. Conclusion 

Influenced by SLR and fluvial SSD reduction, most of the salt marshes 
in mega-deltas are under tremendous pressure. To better protect and 
manage these precious natural resources, it is essential to detect the 
long-term morphodynamics of salt marshes and demonstrate the vari-
ability in salt marsh and mudflat evolution and their underlying con-
nections. Taking the ECW as an example, this paper proposed a creative 
method to detect salt marsh and mudflat multidimensional development 
by combining a full-time series of remote sensing images and regional 
tidal elevations. The main conclusions are as follows:.  

1. The whole Eastern Chongming wetland was experiencing deposition, 
even though there were distinct changes in the local salt marshes. 
Between 2002 and 2019, the northern salt marshes and mudflats of 
the Eastern Chongming wetland exhibited remarkable expansions, 
and their areas increased 2.64 km2/yr and 0.922 km2/yr, respec-
tively, with seaward migrations and accretions. The eastern salt 
marshes had moderate progradation with lateral changes of 39.5 m/ 
yr and vertical increases of 0.103 m/yr, whereas the mudflats 
experienced slight erosion with an area reduction of − 0.738 km2/yr. 

Fig. 11. Locations of embankment constructions in the ECW from 1999 to 2019.  
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Nevertheless, landward retreats were detected in the SZ salt marshes 
and mudflats. 

2. Fluvial SSD is not a dominant factor controlling salt marsh devel-
opment, while the high local SSC ensured salt marsh progression in 
the Eastern Chongming wetland. At the same time, the relative sea- 
level rise in the Eastern Chongming wetland was lower than the 
salt marsh and mudflat accretions, providing sufficient wetland 
resilience to sea-level rise. Local hydrology, human intervention, and 
vegetation effects are recognized as the primary factors that impact 
the spatial evolution pattern of salt marshes and mudflats.  

3. The salt marsh and mudflat dynamics in the Eastern Chongming 
wetland were divided into three patterns. The first pattern is the 
rapid expansion pattern of the salt marshes in the western zone, 
which are supported by sufficient sediment and weaker hydrody-
namics. The second pattern is the moderate progradation pattern of 
salt marshes in the eastern zone. Although seaward migration of the 
salt marshes occurred, the mudflats faced minimal erosion. The third 
pattern is the slight erosion pattern of the salt marshes in the western 

zone. Landward migration of the salt marshes and mudflats revealed 
recession of the salt marsh system. 
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