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ABSTRACT

Mammalian T-cell responses require synergism between
the first signal and co-stimulatory signal. However, whether
and how dual signaling regulates the T-cell response in
early vertebrates remains unknown. In the present study,
we discovered that the Nile tilapia (Oreochromis niloticus)
encodes key components of the LAT signalosome,
namely, LAT, ITK, GRB2, VAV1, SLP-76, GADS, and
PLC-y1. These components are evolutionarily conserved,
and CD3e mAb-induced T-cell activation markedly
increased their expression. Additionally, at least ITK,
GRB2, and VAV1 were found to interact with LAT for
signalosome formation. Downstream of the first signal, the
NF-kB, MAPK/ERK, and PI3K-AKT pathways were
activated upon CD3e mAb stimulation. Furthermore,
treatment of lymphocytes with CD28 mAbs triggered the
AKT-mTORC1 pathway downstream of the co-stimulatory
signal. Combined CD3¢ and CD28 mAb stimulation
enhanced ERK1/2 and S6 phosphorylation and elevated
NFAT1, c-Fos, IL-2, CD122, and CD44 expression,
thereby signifying T-cell activation. Moreover, rather than
relying on the first or co-stimulatory signal alone, both
signals were required for T-cell proliferation. Full T-cell
activation was accompanied by marked apoptosis and
cytotoxic responses. These findings suggest that tilapia
relies on dual signaling to maintain an optimal T-cell
response, providing a novel perspective for understanding
the evolution of the adaptive immune system.
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INTRODUCTION

The emergence of the T-cell-mediated adaptive immune
system in fish played a critical role in facilitating the rapid
occupation of a favorable ecological niche by jawed
vertebrates (Anderson et al., 2004). Recently, many studies
have highlighted the importance of T-cell-mediated adaptive
immunity in teleosts (Ai etal., 2022; Jung etal., 2021; Mu
et al., 2022; Tafalla et al., 2016). Once T cells recognize the
major histocompatibility complex (MHC)-antigenic peptide
complex on the surface of antigen-presenting cells (APCs),
they rapidly activate, proliferate, differentiate, and release
cytokines to resist pathogenic bacterial invasion (Ashfaq et al.,
2019). In recent years, our understanding of the immune
system in certain fish species has seen significant
improvements. However, the scarcity of adequate tools to
study the fish immune response continues to impede research
on the mechanisms and evolution of the fish immune system.
Appropriate T-cell activation is essential to initiate an
appropriate immune response. Mammalian T-cell activation,
proliferation, and differentiation require two critical stimulatory
signals: the interaction of the T-cell receptor (TCR)/CD3
complex with MHC on APCs and the binding of the co-
stimulatory molecule CD28 to the B7 family ligands on APCs
(Cheng et al., 2011; Liu et al.,, 2020b; Mariuzza et al., 2020;
Sanchez-Lockhart et al., 2011). Dependent on conformational
changes, the immunoreceptor tyrosine-based activation motif
(ITAM) in the ¢ chain of the TCR/CD3 complex is
phosphorylated by the leukocyte C-terminal Src kinase (LCK),
which further initiates the recruitment and activation of zeta
chain of T-cell receptor-associated protein kinase 70 kDa
(ZAP-70) (Au-Yeung etal., 2018). Subsequent
phosphorylation of the SH2-domain-containing leukocyte
protein 76 kDa (SLP-76) by ZAP-70 is indispensable for
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interleukin 2 (IL-2) inducible T-cell kinase (ITK) activation,
which is then recruited to the plasma membrane (Sela et al.,
2011). Changes in the conformation of ITK facilitate the
activation of downstream effectors via formation of the linker
for activation of T cells (LAT) signalosome (Schwartzberg
et al., 2005). Growth factor receptor-bound protein 2 (GRB2),
ITK, SLP-76, GRB2-related adaptor protein 2 (GADS), vav
guanine nucleotide exchange factor 1 (VAV1), and
phospholipase C gamma 1 (PLC-y1) are known to interact
with LAT in mammals, which is for downstream signaling
cascades (Bunnell etal, 2000). PLC-y1, once activated,
hydrolyzes the membrane lipid phosphatidylinositol 4,5-
bisphosphate into two second messengers: inositol
polyphosphates and diacylglycerols (Smith-Garvin et al.,
2009). Subsequently, with the help of second messengers,
downstream signaling cascades are activated, including Ca?*-
calcineurin-NFAT, NF-kB, MAPK/ERK, and mTOR signaling
(Gorentla & Zhong, 2012). These signaling cascades
ultimately facilitate T-cell activation, proliferation, and effector
function (Gorentla & Zhong, 2012). The first signal facilitates
antigen binding to specific co-receptors on the T-cell surface,
prompting initial T-cell activation. As a critical co-receptor,
CD3 is involved in the assembly, stabilization, and signal
transduction of the TCR/CD3 complex. This complex transmits
the activation signal, which is generated when the TCR binds
to the antigen, into the intracellular compartment, ultimately
leading to T-cell activation (Kuhns et al., 2006). Monoclonal
antibodies targeting the CD3 ¢ chain (CD3¢ mAbs) have been
developed to induce mammalian T-cell activation in vitro
(Chitnis et al., 2022). The binding of CD3 mAbs strongly
initiates T-cell activation and IL-2 receptor expression.
Moreover, CD3 mAb stimulation can enhance the production
of IL-2, IL-3, and interferon y (IFN-y) (Sauerwein et al., 1988).
However, without the second signal, the interaction of the
TCR with the MHC-antigenic peptide complex is not sufficient
to trigger full T-cell activation, leading to a hypo-responsive
state (Caporali etal., 2014). The second signal is a non-
specific, co-stimulatory signal generated by the interaction of
multiple pairs of co-stimulatory molecules on APCs and
corresponding TCRs, e.g., CD28 and CD80/CD86, 4-1BB and
4-1BBL, and CD40 and CD40L (Chen & Flies, 2013). CD28,
as the most important co-stimulatory molecule, is
characterized by an extracellular variable immunoglobulin-like
structural domain and is constitutively expressed in T cells
(Beyersdorf etal., 2015; Esensten etal, 2016). The
involvement of CD28 enhances full T-cell activation, cell
survival, and cytokine secretion (Marinari etal., 2004).
Moreover, cross-linking CD28 with CD28 mAbs in the
presence of alloantigen, T-cell mitogen (PHA), or CD3 mAbs
greatly enhances the IL-2 production, activation, proliferation,
and cytotoxicity of T cells (June et al., 1990; Jung et al., 1987;
Lesslauer et al., 1986). However, CD28 signaling alone does
not induce T-cell proliferation (Hara et al., 1985). Although
numerous mammalian studies have elucidated that dual
signaling effectively initiates T-cell function (Nguyen etal.,
2016; Sloan-Lancaster et al., 1993), its potential regulatory
role in T-cell response remains unknown in early vertebrates.
An increasing number of studies have demonstrated that
signal transduction downstream of the TCR in teleosts is
similar to that in mammals (Rodriguez-Caparrds et al., 2020),
but many obstacles remain in identifying the different
components and mechanisms that trigger TCR signaling,
including the lack of mAbs (Randelli et al., 2008). Recently,
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various mAbs have been developed against T-cell markers in
teleosts, including DLT15, which specifically targets peripheral
and thymocyte T cells in European sea bass, and 6D1 and
6C10, which specifically target CD4 and CD8, respectively, in
common carp (Abelli etal.,, 1999; Laing & Hansen, 2011).
Moreover, several mAbs have been developed against the
first signal (CD3) in teleosts, including rainbow trout, olive
flounder, Japanese flounder, and grass carp (Boardman et al.,
2012; Jung et al., 2017; Qin et al., 2021; Tang et al., 2017).
Furthermore, mAbs have been developed to target the co-
stimulatory molecule CD28 in olive flounder (Xing et al., 2021).
However, how the first signal and co-stimulatory signal
together regulate the T-cell response in teleosts remains
poorly understood. In the present study, we revealed
conserved components of the LAT signalosome in Nile tilapia
(Oreochromis niloticus) that may be involved in TCR
downstream signal transduction upon CD3e mAb-induced T-
cell activation. Furthermore, we demonstrated the regulatory
role of the dual signal in full T-cell activation, proliferation,
apoptosis, and cytokine release. To the best of our
knowledge, this is the first study to describe the regulatory
mechanism of dual signaling-mediated T-cell response in a
non-mammalian vertebrate. Collectively, these findings
provide a valuable reference for understanding the role of dual
signaling-induced TCR signal transduction, as well as the
evolution of T-cell-mediated adaptive immunity.

MATERIALS AND METHODS

Ethics statement and experimental animals

Nile tilapias (2 g in weight) were purchased from a fish farm in
Guangzhou, Guangdong Province, China, and cultured in 120
L tanks at 28 °C with continuous aeration and daily feeding at
the biological station of East China Normal University. Healthy
tilapias were used for the experiments once reaching 15 g in
weight. All experimental procedures were conducted in
accordance with the Guide for the Care and Use of Laboratory
Animals of the Ministry of Science and Technology of China
and were approved by the East China Normal University
Experimental Animal Ethics Committee (permit No. AR2021-
245).

Sequence, structure, and phylogenetic analysis

The cDNA and amino acid sequences of related genes were
obtained from the NCBI GenBank database
(https://www.ncbi.nlm.nih.gov/) and were analyzed using the
BLAST algorithm (https://blast.ncbi.nlm.nih.gov/Blast.cgi). The
protein domains were predicted by SMART
(http://smart.embl.de/) and domain organization was displayed
using DOG v2.0 software. Multiple sequence alignment of the
amino acids was performed using Clustalx v1.83. The protein
tertiary structures were predicted using SWISS-MODEL
(https://swissmodel.expasy.org/) and displayed with PyMOL
software v2.3.2.0. The phylogenetic tree was constructed
using MEGA v7.0 with the neighbor-joining algorithm. The
accession numbers of selected genes are listed in
Supplementary Table S1.

Leukocyte isolation

Spleen and head kidney leukocytes were isolated according to
our previous study (Wei etal., 2019). Briefly, Percoll (GE
Healthcare, USA) was mixed with 10xphosphate-buffered
saline (PBS) at a ratio of 9:1, then diluted to 52% Percoll and
34% Percoll with L-15 medium (Gibco, USA), respectively.



The spleen was harvested, and a single-cell suspension was
prepared with L-15 medium. We added 4 mL of 52% Percaoll,
34% Percoll, and cell suspension, respectively, into a 15 mL
centrifuge tube, which was then centrifuged at 500 xg for 35
min at room temperature with the lowest acceleration and
deceleration. Leukocytes between the 52% and 34% Percoll
layer were collected, washed with L-15 medium, and
resuspended with Dulbecco’s modified Eagle medium (DMEM,
Sangon Biotech, China) with 10% fetal bovine serum (FBS,
Gibco, USA) for future assay. According to our previous study,
almost all isolated spleen leukocytes are lymphocytes (Ai
et al., 2022; Wei et al., 2019).

Leukocyte stimulation

The spleen leukocytes (3x10°) were cultured in a 24-well plate
with DMEM containing 10% FBS and 1%
penicillin/streptomycin (Sangon Biotech, China) at 28 °C. The
cells were then stimulated with previously generated CD3¢
and CD28 mAbs (2 ug/mL) (Li et al., 2023), and collected at
indicated times for assay. Unstimulated leukocytes were used
for the control. For the phosphorylation assays, the spleen
leukocytes were resuspended in Dulbecco’s PBS at 28 °C for
30 min to rest the phosphorylated proteins. After that, the cells
were transferred to DMEM (10% FBS) and stimulated with
CD3¢ or CD28 mAbs at 28 °C. The leukocytes were
collected at indicated times for western blotting and
immunofluorescence assays.

Quantitative real-time polymerase chain reaction (qRT-
PCR)

Total RNA was extracted from the spleen leukocytes using
TRIzol reagent (Invitrogen, USA) according to the provided
instructions. After treatment with gDNA Purge for 5 min at 42
°C, the RNA was reverse-transcribed using the First-Strand
cDNA Synthesis SuperMix (Novoprotein, China). The resulting
cDNA was diluted 1:10 to serve as a template, and gqRT-PCR
was performed using the NovoStart SYBR gPCR SuperMix
Plus (Novoprotein, China) on a CFX Connect Real-Time
System (BioRad, USA). Relative mRNA expression was
calculated using the 22T method, with B-actin used as the
reference gene. All primer information is listed in
Supplementary Table S2.

Western blot assay

The spleen leukocytes were lysed in NP40 lysis buffer
containing 1 mmol/L phenylmethylsulfonyl fluoride (PMSF),
protease inhibitor cocktail, and phosphatase inhibitor cocktail
Il (MedChemExpress, USA) on ice for 30 min. The
supernatant was harvested after centrifugation at 10 000 xg
and 4 °C for 10 min, then mixed with sodium dodecyl sulfate
(SDS)-loading buffer and boiled at 100 °C for 10 min. The
sample was separated by SDS-polyacrylamide gel
electrophoresis (SDS-PAGE) and subjected to western blot
analysis using primary antibodies (1:1 000), including anti-p-
IKKa/B (Ser176/180, #2697), anti-IKKa/B (#2694), anti-p-IkBa
(Ser32, #2859), anti-IkBa (#4812), anti-p-NF-kB p65 (Ser468,
#3039), anti-NF-kB p65 (#9936), anti-p-c-Raf Ser-338
(#9427), anti-c-Raf (#9422), anti-p-MEK1/2  (Ser217/
221,#9936), anti-Mek1/2 (#8727), anti-p-p44/42 MAPK
(ERK1/2) (Thr202/Tyr204, #4370), anti-p44/42 MAPK
(ERK1/2,#9102), anti-p-MEK1/2 (Ser217/221, #8221), anti-
MEK1/2 (#8727), anti-p-c-Fos (ser32, #5348), anti-c-Fos
(#2250), anti-PI3 Kinase p110a (#4249), anti-p-AKT
(Thr308,#13038), anti-p-AKT (Thrd473, #4060), anti-AKT

(#4697), anti-p-S6 (Ser240/244, #5364), anti-S6 (#2217), anti-
p-4EBP1 (Thr37/46, #5123), anti-4EBP1 (#9959), and anti-B-
actin (#3700) purchased from Cell Signaling Technology.
Primary antibody binding was then detected using secondary
antibodies, 1:30 000 diluted goat anti-rabbit IgG H&L Alexa
Fluor 800 (#5151, Cell Signaling Technology, USA) or
1:10 000 diluted goat anti-mouse IgG H&L Alexa Fluor 680
(#ab175775, Abcam, United Kingdom), at room temperature
for 1 h. After each incubation, the membranes were washed
three times using PBS with Tween 20 (PBST). Finally, the
blots were scanned using Odyssey CLx Image Studio (USA).

Immunofluorescence assay

The spleen leukocytes were centrifuged onto slides using
Cytospin 4 (Thermo Scientific, USA) at 1 000 xg for 3 min,
then fixed with methyl alcohol for 5 min. After the slides were
blocked with 1% bovine serum albumin (BSA) at 37 °C for 1 h,
the samples were washed twice with PBST and once with
PBS. The samples were subsequently incubated with 1:200
diluted mouse-anti CD3e or CD28 mAbs, rabbit anti-p-S6
(Ser240/244), rabbit anti-p-ERK1/2 (Thr202/Tyr 204), or
mouse anti-B-actin primary antibodies at 37 °C for 1 h. After
washing, the cells were incubated with 1:800 diluted Alexa
Fluor 488-conjugated goat anti-mouse IgG H+L (Abcam),
Alexa Fluor 594-conjugated goat anti-mouse IgG H+L
(Abcam), or Alexa Fluor 594-conjugated goat anti-rabbit 1gG
H+L (Abcam) secondary antibodies at 37 °C for 1 h. For the
CD3 and CD28 co-localization assay, the cells were first
stained with mouse anti-CD28 mAbs and Alexa Fluor 594-
conjugated goat anti-mouse IgG H+L, followed by incubation
with FITC-conjugated mouse anti-CD3¢ mAbs at 37 °C for 1 h.
After washing three times, 4’,6-diamidino-2-phenylindole
(DAPI) staining solution (Beyotime, China) was added, with
the slides then sealed with a coverslip and observed using a
Zeiss ApoTome microscope (Germany).

Co-immunoprecipitation (Co-IP) assay

The coding sequence (CDS) regions with a Flag or HA tag,
including LAT-Flag, GRB2-HA, ITK-HA, VAV1-HA, PLC-y1-
HA, GADS-HA, and SLP-76-HA, were amplified from the
tilapia cDNA with corresponding primers (Supplementary
Table S2), then ligated into pEGFP-C1 plasmid to construct
transfection vectors. The HEK293T cells (2x10°) were seeded
into 6 cm? dishes overnight, which were co-transfected with
5 pg of the LAT-Flag-pEGFP-C1 plasmid and 5 pg of the
partner-HA-pEGFP-C1 plasmid. The cells were collected at 48
h post-transfection, then lysed with NP40 as above. The
supernatants were collected and incubated with 10 pL of anti-
Flag Ab-conjugated agarose beads (Sigma-Aldrich, USA) at 4
°C overnight with shaking. Subsequently, the beads were
washed five times with 1 mL of NP40 lysis buffer, mixed with
SDS-loading buffer and heated at 100 °C for 10 min, followed
by western blot analysis.

Flow cytometry

The spleen and head kidney leukocytes were stained with
mouse anti-tilapia CD28 mAbs (1 : 400) in FACS buffer (2%
FBS in PBS) on ice for 30 min, then washed twice with FACS
buffer. The cells were subsequently incubated with Alexa
Fluor 647-conjugated goat anti-mouse IgG H+L (1:2 000;
Abcam) on ice for 30 min, then washed twice. After that, the
leukocytes were stained with FITC-conjugated CD3e mAbs
(1:400) on ice for another 30 min and washed twice. The
cells were finally resuspended in FACS buffer and collected
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on a BD Canto-ll flow cytometer. The data were analyzed
using FlowJo software v10.0.7.

Cell proliferation assay

Spleen leukocytes (1x10°) were labeled with 10 umol/L
carboxyfluorescein succinimidyl ester (CFSE, Invitrogen, USA)
according to the manufacturer’'s instructions. After washing
twice with L15 medium, the cells were resuspended in DMEM
(10% FBS) and cultured in a 24-well plate with or without
2 pg/mL CD3¢ or CD28 mAbs. The cells were harvested at 48
h and stained with CD3e mAbs as above. Subsequently,
7AAD (1:400; BioLegend, USA) was added before the
samples were subjected to flow cytometry assay.

Apoptosis assay

The spleen leukocytes were stimulated with CD3¢ and CD28
mAbs for specified durations, as described above. The cells
were first stained with CD3e mAbs, then twice washed with
FACS buffer. Subsequently, the cells were stained with APC-
conjugated Annexin V antibodies (1:400; BioLegend) in
Annexin V binding buffer (0.14 mol/L NaCl, 0.01 mol/L
HEPES/NaOH, 2.5 mmol/L CaCl,, pH 7.4,) at room
temperature for 15 min, with 7AAD (1:400) then added before
flow cytometry assay.

Statistical analysis
All results are presented as meanzstandard error of the mean
(SEM). Significant differences were determined using a two-
tailed Student t-test. P-values were indicated as : P<0.05;
P<0.01; ™": P<0.001.

RESULTS

Tilapia possesses intact and evolutionarily conserved
LAT signalosome components

Downstream of TCR signaling cascades, the LAT
signalosome plays an essential role in signal transduction to
ensure a proper T-cell response. Here, the central component
of the LAT signalosome was found to be located on
chromosome LG4 in the Nile tilapia (Figure 1A). Based on
synteny analysis, both the location and orientation of LAT and
its adjacent genes, including SH2B1, ATXN2L, SPNS1,
NFATC2IP, and SGF29, were evolutionarily conserved among
the teleost species (Figure 1A). In addition to LAT, other
components that form the signalosome in mammals, including
ITK, GRB2, SLP-76, GADS, VAV1, and PLC-y1, were
identified in tilapia in both our previous (Liang et al., 2022) and
present study (Figure 1B), suggesting the potential presence
of the LAT signalosome in this early vertebrate species.
Furthermore, the tilapia components exhibited conserved
functional domain organization analogous to mouse homologs
(Figure 1B). Notably, the key components of the tilapia LAT
signalosome showed high tertiary structural congruence with
their mouse counterparts (Figure 1C). Phylogenetic trees were
constructed to further investigate the evolutionary
relationships of the LAT signalosome components. Similar to
ITK in our previous study (Liang etal, 2022), all LAT
signalosome components from tilapia formed distinct clusters
with their counterparts from diverse teleost species
(Figure 1D, E; Supplementary Figure S1), suggesting close
evolutionary distance. Collectively, these observations indicate
that Nile tilapias harbor intact and evolutionarily conserved
components of the LAT signalosome.

16 www.zoores.ac.cn

First signal induces activation and formation of LAT
signalosome

As the first signal triggered by the TCR/CD3 complex is
essential for T-cell activation, we first determined the exact
signal during CD3¢ mAb-induced T-cell activation in tilapia.
Downstream of the TCR, the mRNA levels of early T-cell
activation molecules, including LCK and ZAP-70, were
significantly increased in the spleen lymphocytes upon CD3¢
mAb activation (Figure 2A). Furthermore, phosphorylation of
these molecules was concordantly enhanced, as observed in
our previous study (Li et al., 2021). First signal-induced T-cell
activation lead to an increase in the transcriptional levels of
LAT (Figure 2B), as well as ITK, GRB2, SLP-76, GADS,
VAV1, and PLC-y1 (Figure 2C), suggesting activation of the
LAT signalosome components downstream of TCR signaling.
In mammalian systems, engagement of the TCR typically
results in the interaction of LAT with other signaling
components to initiate a downstream cascade. Thus, we next
investigated the constitutive associations of the LAT
signalosome in tilapia. As revealed by the Co-IP assay,
tilapia LAT directly interacted with ITK (Figure 2D), GRB2
(Figure 2E), and VAV1 (Figure 2F), but showed no direct
association with SLP-76, GADS, or PLC-y1 (Figure 2G-I).
These findings suggest that while the roles of SLP-76, GADS,
and PLC-y1 in the LAT signalosome remain uncertain, LAT,
ITK, GRB2, and VAV1 are integral components for
intracellular signaling transduction in tilapia T cells. Overall,
these results underscore the role of the first signal in
modulating LAT signalosome activation and formation in
tilapia T cells.

First signal activates T cell canonical pathways in tilapia
Next, we investigated whether the first signal regulates T-cell
activation in tilapia. Downstream of TCR signaling, several
canonical pathways, such as NF-kB and MAPK/ERK, are
essential prerequisites for orchestrating T-cell-mediated
adaptive immunity (Gorentla & Zhong, 2012). Here, upon
CD3e mAb-induced T-cell activation, there was a significant
increase in the transcription levels of IKKa/f, IkBa, and NF-kB
p65 in the spleen lymphocytes (Figure 3A). Furthermore,
concurrent  enhancements were observed in the
phosphorylation of IKKa/B, IkBa, and NF-kB p65, and
degradation of IkBa (Figure 3B), suggesting robust activation
of the NF-kB pathway. In line with these findings, the
MAPK/ERK pathway was also activated downstream of the
first signal, as evidenced by the elevated transcription and
phosphorylation of MAPK/ERK components (i.e., c-Raf,
MEK1/2 and ERK1/2) and transcription factor c-Fos upon
CD3¢ mAb stimulation (Figure 3C, D). Previous studies have
indicated that the first signal activates the AKT-mTOR
pathway through the NF-kB and MAPK/ERK axis in mammals
(Gorentla etal.,, 2011). Our results revealed that this
regulation is not exclusive to mammals. Notably, we observed
a marked increase in the mRNA and phosphorylation levels of
mTOR components, including AKT, S6, and 4E-BP1, in tilapia
during CD3e mAb-induced T-cell activation (Figure 3E, F).
Thus, these results suggest that the first signal activates
multiple canonical pathways crucial for the activation of T cells
in tilapia.

CD28-mediated co-stimulatory signal initiates AKT-
mTORC1 pathway in tilapia
In addition to the first signal, CD28-mediated co-stimulatory

signaling is also essential for T-cell activation, proliferation,
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(%) are indicated on each branch.

differentiation, and function (Marinari et al., 2004). Through
immunofluorescence and flow cytometry assays, we detected
CD28 on the surface of the tilapia lymphocytes (Figure 4A),
with tilapia CD28* cells accounting for approximately 30% and
20% of the lymphocytes in the spleen and head kidney,
respectively (Figure 4B). To confirm the expression of CD28 in
tilapia T cells, the spleen and head kidney lymphocytes were
stained with CD28 and CD3¢ mAbs for flow cytometry. Results
showed that CD28 was predominantly expressed in the CD3*
T-cell population in both the spleen and head kidney
(Figure 4C), as supported by the co-localization of CD28 and

CD3 based on immunofluorescence assay (Figure 4D). To
further investigate whether the CD28-mediated co-stimulatory
signal regulates T-cell activation, the spleen lymphocytes were
stimulated with CD28 mAbs. Compared to the unstimulated
control, CD28 and CD28 mAb ligation enhanced both the
transcription and phosphorylation of AKT (Figure 4E, F),
subsequently activating downstream mTORC1 signaling, as
evidenced by the increased transcription and phosphorylation
of S6 and 4E-BP1 (Figure 4E, F). These results suggest that
the CD28-mediated co-stimulatory signal may regulate T-cell
responses in tilapia via AKT-mTORC1 pathway initiation.
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Figure 2 Expression patterns and interactions of tilapia LAT signalosome molecules
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Dual signals are critical for full activation of T cells in
tilapia

We next examined the essential role of dual signals in T-cell
activation of tilapia. Stimulation of spleen lymphocytes with
CD3¢ and CD28 mAbs resulted in a pronounced increase in
the phosphorylation of ERK1/2 and its nuclear translocation
(Figure 5A). A similar trend was observed for the
phosphorylation and nuclear translocation of S6 (Figure 5B).
These events, related to MAPK/ERK and mTORC1 activation,
suggest the potential involvement of dual signals in promoting
T-cell activation of tilapia. Although stimulation with either
CD3e or CD28 mAbs alone can induce mRNA expression of
T-cell activation transcription factors NFAT1 and c-Fos,
combined stimulation with CD3¢ and CD28 mAbs led to much
higher expression (Figure 5C). Stimulation with the first signal,
but not the second signal, also increased the transcription of
T-cell activation markers CD122 and CD44 in the spleen
lymphocytes (Figure 5D), whereas activation of both signals
resulted in more pronounced up-regulation (Figure 5D). Thus,
these observations suggest that full T-cell activation requires
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the synergistic cooperation of dual signaling. To assess the
effects of the first signal, co-stimulatory signal, and dual
signals on tilapia T cell proliferation, CFSE-labeled spleen
lymphocytes were stimulated with CD3g, CD28, or CD3¢ plus
CD28 mAbs in vitro. At 48 h after stimulation, synergistic CD3¢
and CD28 mAbs treatment induced significant CD3* T cell
proliferation, while neither the CD3¢ nor aCD28 mAbs alone
triggered such proliferation (Figure 5E), highlighting the
indispensable role of both the first and co-stimulatory signals
in T-cell proliferation in tilapia. Taken together, these findings
indicate that the dual signals are essential for complete
activation and proliferation of tilapia T cells.

Dual signals promote T-cell function and triggers T-cell
apoptosis

As the dual signals triggered T-cell activation and proliferation,
we further explored their potential roles in regulating tilapia T-
cell function. Dual signal stimulation induced high mRNA
expression of IL-2 and tumor necrosis factor alpha (TNF-a)
(Figure BA), critical factors in T-cell proliferation, survival, and
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Figure 3 Activation of canonical T-cell pathways by first signal in tilapia

A, B: mRNA and phosphorylation levels of NF-kB signaling components in spleen (A) or head-kidney (B) leukocytes following CD3¢ mAb stimulation
at indicated times. C, D: mRNA and phosphorylation levels of MAPK/ERK signaling components in spleen (C) or head-kidney (D) leukocytes
following CD3e mAb stimulation at indicated times. E, F: mRNA and phosphorylation levels of PI3BK-AKT signaling components in spleen (E) or
head-kidney (F) leukocytes following CD3¢ mAb stimulation at indicated times. Experiments were conducted at least twice independently. ": P<0.05;

”: P<0.01; ™": P<0.001.

function (Smith-Garvin et al., 2009). Given the crucial roles of
both helper and cytotoxic T cells in T-cell function and
infection elimination, we evaluated the immune responses
related to helper and cytotoxic T cells in lymphocytes upon
CD3¢ plus CD28 mAb stimulation. Compared to the
unstimulated control, dual signal-induced T-cell activation
resulted in a marked up-regulation in the mRNA levels of T-bet
and GATAS, key factors driving the differentiation of CD4" T
cells towards Th1 and Th2 phenotypes (Figure 6B). The
transcript levels of cytotoxic genes perforin A and granzyme B,
were also significantly induced (Figure 6C). Additionally,
synergistic CD3¢ and CD28 mAb stimulation increased the
expression of apoptosis-related caspase genes, including
caspase-3, caspase-6, caspase-8, and caspase-9 (Figure 6D).
This resulted in an increase in CD3* T cell apoptosis
(Figure 6E), suggesting that the dual signals triggered
activation-induced apoptosis in tilapia T cells. Overall, our
findings support the notion that dual signal cooperation is
essential for T-cell function and plays a potential role in T-cell
apoptosis to maintain immune homeostasis in tilapia.

DISCUSSION

In response to the variable and complex microbial
environment, teleosts have evolved a complete T-cell-
mediated adaptive immune system based on their innate
immune system (Dickerson & Findly, 2017; Lu & Chen, 2019;
Ren etal., 2019; Wilson, 2017). Recent studies on the
identification of multiple T-cell subpopulations and response
patterns after infection strongly underpin the indispensable
role of T-cell immunity in fish (Ai etal., 2022; Tafalla et al.,
2016; Yamaguchi et al., 2019). To date, however, it remains
unclear whether the “two-signal hypothesis” described in
mammals also governs the T-cell response in fish. Using the
tilapia CD3¢ and CD28 mAbs previously developed in our
laboratory, we examined the impact of the first and second
signals on T-cell activation in teleosts.

T-cell activation is initiated by complex intercellular
interactions. Assembly of the CD3-TCR complex is essential
for recognition of the MHC-antigenic peptide complex and
transmission of TCR signals (Gorentla & Zhong, 2012; Hara
et al., 1985; Smith-Garvin et al., 2009). CD3 aids in stabilizing
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A: Localization of CD28 in spleen lymphocytes detected by confocal microscopy. B: CD28* lymphocytes in spleen and head kidney detected by flow
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with CD28 mADb, n24. F: Phosphorylation levels of mMTORC1 signaling components determined after head-kidney leukocytes were stimulated with

CD28 mAbs. Experiments were conducted at least twice independently

the immunoreceptor tyrosine activation motif in its cytoplasmic
region and transmitting TCR activation signals, triggering a
kinase activation cascade to promote T-cell activation (Alcover
& Alarcon, 2000; Kuhns et al., 2006). In mammals, functional
mAbs against CD3¢ chains have been developed and used to
induce T-cell activation in vitro, providing a valuable tool for
investigating T-cell-mediated immune mechanisms (Woodle
et al.,, 1991). While CD3 antibodies have been established in
various teleosts, no antibodies have been generated for
stimulating T-cell activation, with previous teleost studies
relying on PHA or PMA plus ionomycin stimulation to induce
T-cell activation in vitro (Miyazawa etal., 2018; Mu etal.,
2022; Tang et al., 2017). In the present study, Nile tilapia T-
cell activation was successfully induced in vitro using CD3¢
mAbs. The first signal mimicked by CD3¢ mAbs induced LCK
and ZAP-70 activation, implying the formation of TCR
signaling equivalent to that observed in mammals (Gorentla &
Zhong, 2012). Downstream of ZAP-70, LAT signalosome
formation through the cooperative interactions of LAT with
other molecules is crucial for T-cell responses (Liu etal,
2020a). Upon TCR engagement, the interactions of LAT with
GADS, GRB2, and PLC-y1 are indispensable for T-cell
development (Zhu et al., 2003). Furthermore, the multivalent
adaptor protein SLP-76 interacts with LAT and GADS to
stabilize their persistent signaling clusters for T-cell activation
(Bunnell et al., 2006). To date, however, no previous studies
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.7 P<0.01.

have identified the LAT signalosome in early vertebrates,
particularly teleosts. In our research, we not only confirmed
the presence of potential LAT signalosome components in
tilapia, including LAT, ITK, GRB2, VAV1, SLP-76, GADS, and
PLC-y1, but also demonstrated that their expression was
induced by activation of the first signal. Of these, LAT
cooperatively interacted with ITK, GRB2, and VAV1 to
transmit TCR signals. Intriguingly, the binding of tilapia LAT to
SLP-76, GADS, or PLC-y1 was not detected by Co-IP assay,
implying the possibility of functional differences between
teleosts and mammals. However, considering that Co-IP
assays based on overexpression systems cannot exclude
transient or indirect binding, the detailed contribution of these
molecules in forming LAT signalosomes remains unclear.
Thus, further study is required to elucidate whether SLP-76,
GADS, and PLCy1 are involved in the formation of LAT
signalosomes to regulate T-cell activation in tilapia.

Activation of PLC-y1 may facilitate the response of
components within the NF-kB and MAPK/ERK pathways
(Nishibe etal., 1990). In mammals, accumulating evidence
suggests that TCR engagement may drive NF-kB signaling,
which not only governs T-cell activation, proliferation, and
cytokine release, but also T-cell development, survival, and
function (Hayden & Ghosh, 2011; Li & Verma, 2002). Our
previous studies on tilapia revealed that PHA or combined
PMA plus ionomycin stimulation activated the NF-kB and
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Figure 5 Dual signals trigger full activation of T cells in tilapia

A, B: Phosphorylation of ERK1/2 or S6 examined by confocal microscopy after spleen lymphocytes were stimulated with CD3¢ plus CD28 mAbs for
12 h. C, D: mRNA levels of indicated molecules determined 12 h after spleen lymphocytes were stimulated with CD3¢ mAbs, CD28 mAbs, or CD3¢
plus CD28 mAbs, n24. E: Proliferation of spleen lymphocytes examined by flow cytometry 48 h after cells were stimulated with CD3¢ mAbs, CD28
mAbs, or CD3¢ plus CD28 mAbs, with unstimulated lymphocytes used as a control. Experiments were conducted at least twice independently. ns:

No significance; ": P<0.05; : P<0.01; " P<0.001.

MAPK/ERK pathways, thereby orchestrating the activation,
proliferation, differentiation, and function of T cells (Wei et al.,
2020, 2021). The present study supports our previous
findings, asserting the involvement of the NF-kB and
MAPK/ERK signaling pathways in T-cell activation after CD3¢

mAb stimulation. Downstream of MAPK/ERK signaling, the
transcription factor c-Fos, an AP-1 component member, plays
an important role in the regulation of numerous processes,
including cell migration, proliferation, differentiation, apoptosis,
and angiogenesis (You et al., 2016). In fish species such as
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Figure 6 Dual signal-induced T-cell activation is accompanied by cytotoxic responses and apoptosis

A-D: mRNA levels of indicated molecules in spleen lymphocytes examined 12 h after cell stimulation with CD3¢ plus CD28 mAbs, n24. E:
Representative contour plot of Annexin V and 7AAD staining of CD3¢" T cells 12 h after spleen lymphocytes were stimulated with CD3e plus CD28
mAbs. Experiments were conducted at least twice independently. ": P<0.05; ™: P<0.01; ™: P<0.001.

Liza haematocheila, c-Fos expression can be strongly induced
by poly I:C or Lactococcus garvieae stimulation, suggesting
the possible involvement of c-Fos in the fish immune response
(Janson etal.,, 2019). Consistent with this finding, we
demonstrated the response of c-Fos to TCR signaling in tilapia
T cells, highlighting its potential role in regulating T-cell
biological processes. Notably, the PI3K/AKT signaling
pathway was similarly induced upon CD3e mAb stimulation.
Drawing parallels from mammalian systems, we theorize that
heightened Ras activity may modulate PI3K/AKT signaling
(Chappell etal.,, 2011), although this hypothesis requires
further investigation in future studies. Nevertheless, our results
support the notion that the first signal plays a vital role in
initiating T-cell activation in teleosts.

Over the last fifty years, extensive research has explored
many co-stimulatory receptors (CD28-CD80/CD86) on the
surface of T cells, which spatiotemporally regulate the biology
of these cells (Esensten et al., 2016; June et al., 1990). The
binding of the key co-stimulatory receptor CD28 to the B7
family molecules CD80/CD86 generates co-stimulatory signals
that promote T-cell activation, proliferation, survival, and
cytokine secretion (Esensten etal., 2016; June etal., 1990;
Tavano etal.,, 2006). Positive stimulatory effects of CD28
molecules have been reported in several teleost species,
including rainbow trout, grass carp, and half-smooth tongue
soles (Hu et al., 2012; Lu et al., 2022; Zhang et al., 2009). For
instance, the cytoplasmic tail of trout CD28 mediates ERK
phosphorylation, and the chimeric receptor formed by the
fusion of the extracellular structure of human CD28 with the
cytoplasmic tail of rainbow trout CD28 promotes TCR-induced
IL-2 production in human T-cell lines, indicating that trout
CD28 is indeed a positive co-stimulatory factor (Bernard et al.,
2006). In the present study, we found that tilapia CD28 was
highly expressed on the surface of T cells isolated from the
spleen and head kidney. Furthermore, the mTORC1 pathway
was strongly activated by ligation of CD28 mAbs, suggesting
that tilapia CD28 is involved in T-cell activation as a positive
co-stimulator.

Recent mammalian studies have shown that full T-cell
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activation, proliferation, survival, and cytokine release require
synergistic stimulation by the first signal and CD28-mediated
co-stimulatory signals (Esensten etal.,, 2016; June etal.,
1990). Our results also showed that dual signaling by CD3¢
plus CD28 mAb stimulation strongly induced mTORC1 and
ERK pathway activation in T cells, demonstrating the
importance of dual signaling for T-cell activation. In the
absence of CD28-mediated co-stimulatory signals, T cells fail
to achieve full activation, instead entering an anergic state
categorized by an inability to proliferate and become hypo-
responsive (Esensten etal, 2016; Gimmi etal., 1993).
Similarly, our results showed that synergistic stimulation by
CD3e plus CD28 mAbs induced tilapia T-cell proliferation,
while stimulation by CD3¢e or CD28 mAbs alone did not induce
the same proliferation, implying that tilapia T-cell proliferation
requires synergistic stimulation by dual signaling. This finding
may be related to the expression of IL-2, a key T cell growth
factor, as the absence of CD28 signaling in mammals impairs
the expression of IL-2 and further affects the expression of
various effector molecules (Coppola et al., 2020). Similarly,
our study showed that tilapia T cells synergistically stimulated
by dual signaling robustly induced IL-2 expression, further
promoting T-cell differentiation. Notably, previous research
has shown that combined treatment with CD28 antibodies and
PHA can stimulate the proliferation of flounder peripheral
blood leukocytes and increase the transcription of cytokines
IL-2, TNF-qa, IFN-y, and IL-6 (Xing et al., 2021). Remarkably,
in half-smooth tongue soles, the binding of CD28 antibodies
alone significantly induces kidney lymphocyte proliferation,
suggesting considerable differences among teleost CD28
molecules (Hu etal, 2012). In addition, our results
emphasized that dual signaling synergism induced T-cell
apoptosis in tilapia, a phenomenon likely attributed to
activation-induced apoptosis as opposed to apoptosis
resulting from CD28 deficiency (Green et al., 2003).

In summary, our study demonstrated that T-cell-mediated
adaptive immune responses in tilapia are regulated by
synergy between the CD3/TCR-mediated first signal and
CD28-mediated co-stimulatory signal. Notably, dual signaling



is required for complete T-cell activation, subsequently
inducing T cells to enter a proliferative and responsive state.
Moreover, co-stimulation by dual signaling plays a critical role
in activation-induced T-cell apoptosis as a mechanism for
immune homeostasis maintenance. Thus, our results suggest
that dual signaling is essential for T-cell functions in response
to variable microbial environments. To the best of our
knowledge, this study is the first to describe dual signaling-
mediated T-cell responses in teleosts. Overall, these findings
provide a robust basis for identifying T-cell immune
mechanisms in teleosts and offer a novel perspective for
understanding the evolution of the adaptive immune system.
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