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Abstract Sediment properties are known to influence acoustic backscatter intensity. This sediment-acoustic
relationship has been investigated previously through using physical geoacoustic models and empirical
methods and found to be complex and nonlinear. Here we employ a robust machine-learning statistical
model (random forest decision tree) to investigate the most likely nonlinear sediment-backscatter
relationships. The analysis uses colocated sediment and acoustic backscatter data (collected from a 300-kHz
multibeam sonar system) for 564 locations in four different areas on the Australian margin. Seven
sediment grain size properties (%gravel, %sand, %mud, mean grain size, sorting, skewness, and kurtosis) were
used to predict the acoustic backscatter responses at individual incidence angles. The modeling results
demonstrate the effectiveness of this multivariate predictive approach for the investigation of
sediment-acoustic relationship. Thus, we find that for incidence angles between 1° and 41°, the sediment
variables explain around 70% of variance in the backscatter intensity. Sediment mud content was found to be
the most important sediment variable in the model and has a significant negative relationship with
backscatter intensity. Mean grain size was the second ranked sediment variable and found to have a positive
relationship with backscatter intensity. The results also show that sediment mud content plays a key role in
sorting-backscatter and sand-backscatter relationships. Using only two sediment properties, mud content
and mean grain size, together it was possible to largely explain the sediment-acoustic relationship. The
strongest backscatter return occurred with medium sediment mud content and large mean grain sizes
(or muddy coarse sand).

1. Introduction

Traditionally, seabed sediment information was only available from a limited number of samples collected
during marine surveys. With the rapid development of acoustic remote sensing technologies in side scan
sonar and multibeam echo sounder, seabed sediment characteristics and substrate types can now be effec-
tively mapped by proxy across large areas (Anderson et al., 2008; Pratson & Edwards, 1996). This technological
advance chiefly relies on the ability of acoustic backscatter data to broadly differentiate sediment types, prin-
cipally mud, sand, and gravel (e.g., Huang et al., 2013; Lucieer, 2008).

Physically based geoacoustic models, such as the composite roughness model, have been developed to
investigate the sediment-acoustic relationship (APL-UW, 1994; Fonseca et al., 2002; Hamilton, 1980;
Jackson et al., 1986; Jackson & Briggs, 1992). Previous studies using these physical models demonstrated
that sediment grain size properties and various substrate types can be distinguished based on their back-
scatter angular response curves (APL-UW, 1994; Chakraborty et al., 2000; De & Chakraborty, 2011; Fonseca
et al., 2002; Fonseca & Mayer, 2007; Haris et al., 2011). However, due to the large variability of seabed proper-
ties across the global oceans, one single geoacoustic model is not likely applicable to all cases (Hamilton,
1980; Hughes Clarke, 1994). The sediment-acoustic relationship is thus often investigated through empirical
and statistical approaches. Numerous studies have indicated that acoustic backscatter strength correlates
with sediment grain size properties (Collier & Brown, 2005; Davis et al., 1996; De Falco et al., 2010; Ferrini
& Flood, 2006; Goff et al., 2000, 2004; Haris et al., 2012; Huang et al., 2012; Huang, Siwabessy, et al., 2014;
Kloser et al., 2001; Ryan & Flood, 1996; Sutherland et al., 2007), and backscatter data can be used to classify
substrate types (Hamilton & Parnum, 2011; Huang et al., 2013; Lucieer, 2008; Lucieer & Lamarche, 2011;
McGonigle et al., 2009; Preston, 2009; Rzhanov et al., 2012). For example, studies showed that backscatter
intensity has a moderate and positive correlation with sediment mean grain size (MGS; Collier & Brown,
2005; Davis et al., 1996; Ferrini & Flood, 2006; Goff et al., 2000; Huang, Siwabessy, et al., 2014; Ryan &
Flood, 1996). Also, backscatter intensity was found to be positively correlated with coarse fractions and
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inversely correlated with finer fractions of the sediment composition (De Falco et al., 2010; Goff et al.,
2004; Haris et al., 2012; Huang, Siwabessy, et al., 2014; Sutherland et al., 2007). Other sediment grain
size properties, especially sorting may also play important roles in the backscatter-sediment relationship
(Ferrini & Flood, 2006; Goff et al., 2004; Goff et al., 2000; Huang et al., 2012; Huang, Siwabessy, et al.,
2014).

In most of the above-mentioned studies, acoustic backscatter response was simply correlated with one par-
ticular sediment grain size property, such as MGS. Although this univariate analysis is useful for the under-
standing of the sediment-acoustic relationship, it is not sufficient for the in-depth understanding of the
mechanisms behind the complex sediment-acoustic relationship briefly described in the next section.
Huang et al. (2012) and Huang, Siwabessy, et al. (2014) have used acoustic backscatter data (as the explana-
tory variables) to model multiple sediment grain size properties (as the response variables). This approach is
useful for seabed mapping but not so for the understanding of sediment-acoustic relationships. To our
knowledge, only one study applied a multivariate linear regression method to investigate the acoustic back-
scatter response (e.g., as the response variable) due to the interaction of several sediment properties (e.g., as
the explanatory variables; Ferrini & Flood, 2006). Note that this statistical approach is the reverse of that of
Huang et al. (2012) and Huang, Siwabessy, et al. (2014).

This study aims to employ a similar multivariate approach for the investigation of sediment-acoustic relation-
ships. Seven sediment grain size properties, %gravel, %sand, %mud, MGS, sorting, skewness, and kurtosis, are
used as explanatory variables (or predictors) to predict the acoustic backscatter responses at individual inci-
dence angles (the response variables). We employ a robust machine-learning statistical model to investigate
the most likely nonlinear sediment-backscatter relationships, based on colocated sediment and acoustic
backscatter data, which was collected using a 300-kHz multibeam sonar system, from four areas on the
Australian margin. These areas represent different sedimentary environments, ranging from sand-dominated
nearshore to mixed mud, sand and gravel shelf deposits.

2. Sediment-Acoustic Relationship

The backscatter intensity received by an acoustic device (or a transducer) is a function of the signal absorp-
tion and scattering properties of water, the interaction with the water-seabed interface, the angle of
incidence, and seabed topography (de Moustier & Matsumoto, 1993). After radiometric and geometric cor-
rections, the calibrated backscatter data reflect the acoustic properties of water-seabed interface such as
interface roughness parameters, water and sediment densities, sediment porosity, water and sediment
sound velocities, and the sound attenuation coefficient in sediment (Hamilton, 1980; Jackson et al., 1986;
Jackson & Briggs, 1992). In general, these acoustic properties vary with the seabed substrate types
(Hamilton, 1980). More specifically, after calibration, the backscatter intensity is largely a function of inci-
dence angle and three seabed physical properties: the acoustic impedance contrast (often called hardness),
apparent interface roughness (relative to acoustic frequency), and sediment heterogeneity (Ferrini & Flood,
2006; Fonseca & Mayer, 2007; Jackson & Briggs, 1992; Jackson et al., 1986; Kloser et al., 2001; Lurton &
Lamarche, 2015).

When encountering the water-seabed interface, a portion of the incidence acoustic energy reflects and scat-
ters from the seabed, the remaining portion penetrates into the seabed. The acoustic impedance is defined
by the product of density and sound velocity. Harder seabed interfaces (e.g., hard substrate and coarse sedi-
ment), which have a higher impedance contrast to water, return higher acoustic energy to the transducer.
Interface roughness is caused by small-scale bathymetric relief. Smooth seabeds generate specular reflec-
tion in directions away from the transducer at oblique incidence angles. As a result, the transducer receives
little returned acoustic energy at this angle range; but at near-nadir incidence angles, the returned acoustic
energy is the strongest. In contrast, rougher seabed scatters the incidence energy at all directions, which
effectively returns more energy back to the transducer. It should be noted that the effect of seabed (inter-
face) roughness is often acoustic frequency dependent; for the frequency range used by modern multibeam
echo sounders (tens to hundreds of kilohertz), the same seabed appears rougher to higher acoustic fre-
quency. Volume scattering occurs when acoustic energy penetrates into the seabed. The amount of pene-
tration is dependent on the acoustic frequency and interface hardness. Hard substrates (e.g., rocks) result in
little penetration. For sediment, with decreasing hardness, a higher portion of the incidence energy is
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transmitted into the sediment. Meanwhile, higher frequency results in less penetration depth. The trans-
mitted acoustic energy into the sediment is scattered by the heterogeneity of the sediment; a portion of this
volume scattering eventually returns to the transducer. Generally, the contribution from volume scattering
to backscatter intensity is higher for more heterogeneous sediment.

Importantly, seabed backscatter strength is also angle dependent (de Moustier & Alexandrou, 1991; Jackson
et al., 1986; Lurton & Lamarche, 2015). At near-nadir incidence angles, the contribution from vertically spec-
ular reflection dominates the backscatter return, which usually results in the highest intensity, although this
decreases very quickly with soft sediment (Ferrini & Flood, 2006; Jackson et al., 1986). However, at oblique
incidence angles, contributions from interface roughness and volume scattering dominate (Ferrini & Flood,
2006; Jackson et al., 1986). At higher incidence angles (e.g., greater than the critical angle), little acoustic
energy is transmitted into sediment, and the contribution from interface roughness also decreases quickly
(Jackson et al., 1986; Jackson & Briggs, 1992).

3. Study Areas

Four study areas are used to provide a range of seabed sediment types (Figure 1):

1. Jervis Bay, situated on the south coast of New SouthWales, is a semienclosed coastal embayment. The bay
is exposed to highly variable offshore seas and swell from the southeast that is attenuated through the
entrance and across subtidal reefs and shoals. Tidal range is microtidal (mean range ~1.6 m) with tidal cur-
rents weak, apart from at the entrance (Holloway et al., 1992). Seabed samples used for this study were
collected from the southeastern part of Jervis Bay where the sediment comprises fine-medium quartz
sand with minor carbonate content (Anderson et al., 2009; Taylor, 1972). Water depths in the survey area
range from <5 to 40 m.

2. Joseph Bonaparte Gulf, on the northern Australian margin, is an extensive, shallow carbonate-dominated
shelf characterized by carbonate banks and terraces (Heap et al., 2010; Przeslawski et al., 2011). The gulf
receives significant loads of fine-grained sediment from the numerous rivers in this tropical part of
Australia that are mixed with locally produced carbonate sediments (Lees, 1992). Tidal range is upper-
meso (~2–5 m) with strong tidal currents acting to transport suspended sediments across the shelf. The
region is also influenced by cyclones that generate waves that may initiate sediment transport across
the shallower banks and terraces (i.e.,<20m). Mapping and sampling were undertaken across four survey
areas in the outer Gulf in water depths of 20 to 200 m. The sampled sediment is overwhelmingly com-
posed of carbonate grains, with textures ranging from well-sorted coarse-to-medium sand to very poorly
sorted sandy mud.

3. Oceanic Shoals, located to the northwest of Joseph Bonaparte Gulf, is characterized by isolated carbonate
banks and terraces, separated by submarine plains and channels (Nichol et al., 2013). The area also
receives sediment discharged from coastal river systems. Strong tidal flows, locally generated wind driven
waves, and seasonal cyclones all have influence on sediment transport. Four areas were surveyed within
this study site in water depths of 30 to 180m. Seabed sediment samples comprise well-sorted silt to sandy
silt on plains to poorly sorted coarse muddy sand, sometimes with gravel inclusions on banks and terraces
(Nichol et al., 2013).

4. Carnarvon shelf, located along the central coast of Western Australia, is characterized by a mix of sandy
seabed with mobile bedforms and hard-ground areas comprising shore-parallel ridges, mounds, and
irregular rocky outcrops (Brooke et al., 2009; Nichol & Brooke, 2011). The shelf experiences a strongly
seasonal wave climate, ranging from low-energy (calm) summer conditions to high-energy storms in
winter (wave height 3–4 m), with summer cyclones approximately every 2 years. Tidal range is microti-
dal (~0.6–1.8 m) and tidal currents weak, but regional oceanographic currents (Leeuwin Current and
Ningaloo Current) are strong enough to initiate sand transport. Seabed sediments were sampled across
three survey areas in water depths of 30 to 250 m (Huang, McArthur, et al., 2014). In the northern survey
area, the sediment ranges from gravelly sand on the inner shelf to sand and muddy sand on the middle
and outer shelf. In the central survey area, the sediment comprises varying mixtures of mud, sand, and
gravel but within an overall trend of increased mud content toward the outer shelf. Sediment in the
southern survey area is dominated by sand, with a small proportion of gravel on the middle and outer
shelf.
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Figure 1. The study areas and the sample locations overlaid on the multibeam backscatter mosaics normalized at 25°
incidence angle; (a) the locations of the study areas on the Australian margin; (b) the Jervis Bay survey area; (c1–c4) the four
subareas within the Joseph Bonaparte Gulf survey area; (d1–d4) the four subareas within the Oceanic Shoals survey area;
(e1–e3) the three subareas within the Carnarvon Shelf survey area.
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4. Materials and Methods
4.1. Acoustic Backscatter Data

Acoustic backscatter data were collected as part of seabed mapping and sampling surveys in each of the four
study areas, using a 300-kHz Kongsberg EM3002 multibeam sonar system. For each data set, raw backscatter
data were calibrated and processed using CMST-GAMB Process v8.11.02.1 software, a multibeam backscatter
processing toolbox codeveloped by Geoscience Australia and the Centre for Marine Science and Technology
at Curtin University of Technology (Gavrilov, Duncan, et al., 2005; Gavrilov, Siwabessy, & Parnum, 2005;
Parnum & Gavrilov, 2011a). For each survey the system was calibrated against a reference seabed to make
sure the backscatter level consistent across surveys. The reference seabed for each survey was chosen at a
uniform, sandy and flat location, consistent with the recommendation of Lamarche and Lurton (2017).
Backscatter processing included correction for transmission loss and ensonification area, and removal of
the system implemented model and the angular dependence (Siwabessy et al., 2017).

Essentially, the backscatter processing involves applying a generalized sonar equation to the calibration pro-
cess (equation (1); the expanded equations can be found in ICES, 2007, and Parnum and Gavrilov, 2011a):

Ss θið Þ ¼ EL θið Þ � SL θið Þ þ 2TL θið Þ � 10 logA θið Þ (1)

where θi; is the incidence angle,Ss θið Þis the averaged backscatter strength, EL (θi) is the echo level, SL (θi) is the
source level including directivity, TL (θi) is the transmission loss in the water column, and A θið Þ is the ensoni-
fication area. In the raw data, the manufacturer implements a system model to produce an equalized back-
scatter mosaic by removing the angular dependence of the backscatter strength (Hammerstad, 2000). It is
essential that this model be removed in order to revert back the true relationship between backscatter inten-
sities and incidence angles. Therefore, beside the corrections defined by equation (1) (e.g., the transmission
loss and ensonification area), the process within the toolbox also removes the systemmodel and involves the
calculation of the incidence angle and correction of the beam pattern.

After all corrections, 60 backscatter mosaics gridded from incidence angles of 1° to 60° were generated at an
interval of 1°. Each individual backscatter mosaic contains angularly equalized backscatter strengths that were
normalized to the backscatter strength at a particular incidence angle (Parnum & Gavrilov, 2011b). Effectively,
we used an along-track slidingwindowof 100 pings to calculate themean angular responsewithin thewindow;
this mean angular trend was then removed and the mean backscatter value within the window at one of the
chosen incidence angles between 1° and 60° was added back to generate the normalized backscatter at the
chosen incidence angle (Parnum & Gavrilov, 2011b). Using this empirical method (Parnum & Gavrilov,
2011b), we were able to generate backscatter mosaics at all incidence angles for all study areas. This would
enable us to investigate whether the sediment-backscatter relationships are affected by acoustic incidence
angle without explicitly using backscatter angular response curve (e.g., Huang et al., 2013; Huang, Siwabessy,
et al., 2014; Lamarche et al., 2011). The spatial resolution of these backscatter mosaics are 2 m for Jervis Bay
and Oceanic Shoals, 3 m for Carnarvon Shelf, and 10 m for Joseph Bonaparte Gulf.

It is important that we maintain backscatter level consistent across surveys (Lamarche & Lurton, 2017). For
every survey in this study, the backscatter level was monitored using the build-in self-test procedure as part
of mobilization and calibration procedure at the beginning of a survey. The backscatter data were collected
over a known seabed type (e.g., sand). Measured backscatter data were compared to the APL-UW theoretical
model of the seabed type (APL-UW, 1994). Any residuals between the measured backscatter data and the
theoretical model were removed from the measured backscatter so that the calibrated backscatter data
matches the theoretical model. This is part of the beam pattern correction mentioned earlier, similar to the
calibration process implemented in Lamarche et al. (2011) to fit a modeled pattern on data recorded over
homogenous seabed. Backscatters from any overlapping areas between surveys were also monitored.
Lastly, we maintained the same settings (e.g., ping mode, pulse length, transmitter power, and receiver gain)
for all our surveys in order to maintain backscatter level consistent across surveys, similar to the recommen-
dation of constancy of acquisition settings by Lamarche and Lurton (2017). We applied minimum changes to
the settings only when survey conditions demand.

This standard multibeam acquisition and instrument calibration procedure (Buchanan et al., 2013), together
with the standard backscatter processing method, have ensured the consistency of the relative backscatter
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calibration (Lamarche & Lurton, 2017). As a result, the decibel values from all backscatter mosaic images
across the four study areas are indeed comparable.

4.2. Sediment Samples

Sediment samples were collected from a range of water depths (5–200 m) using a Smith-McIntyre grab (10 L,
0.1-m2 opening) from representative areas of seabed in each survey. Sample collection occurred at the same
time as the multibeam surveys with sample location determined using the same DGPS system as the multi-
beam surveys. The grain size properties of these samples were analyzed in the laboratory to determine the
following: %mud, %sand, and%gravel by wet sieve separation (Lewis &McConchie, 1994); MGS; sorting, stan-
dard deviation, SD; skewness and kurtosis on the sand and mud fractions by laser granulometry (using a
Malvern Mastersizer 2000) with summary statistics calculated using GRADISTAT (Blott & Pye, 2001). In total,
we used data from 564 sediment samples that collectively provide a broad textural range frommud to gravel
(Table 1).

4.3. Statistical Modeling

For each sediment sample, the mean backscatter intensity values within a circular buffer of 30-m radius
around the sample location were extracted from the backscatter mosaics. This buffer was to account for
the positional uncertainty of the sediment samples. It is also reasonable to assume that the sediments within
these small buffers are relatively homogenous because we only chose representative areas of seabed to sam-
ple. The sediment and acoustic backscatter data set of the 564 sediment samples used in this study is avail-
able in the supporting information (Data Set S1). Statistical modeling was then undertaken using the random
forest decision tree (RFDT; Breiman, 2001) technique, implemented through DTREG software (http://www.
dtreg.com), to investigate the sediment-acoustic relationship. The RFDT grows a number of independent (sin-
gle) decision trees (e.g., the classification and regression tree, Breiman et al., 1984) in parallel. The predictions
of these individual trees are combined through a bagging (Bootstrap Aggregating) process. The aggregation
is done either by averaging (regression) or by majority voting (classification) to generate the final prediction.
The bootstrap involves randomly selecting a proportion of samples with replacement from the entire sample
set for each of the individual trees. In addition, the RFDT also chooses a random number of predictors (expla-
natory variables) from the entire predictor set for each of the individual trees. These two randomization pro-
cesses encourage diversity (variation) among individual trees, which often improves prediction performance
over that of a single decision tree.

The RFDT’s robust modeling performance and ability to identify and rank explanatory variables (e.g.,
Francke et al., 2008; Huang et al., 2012; Huang, Siwabessy, et al., 2014) were the main reasons behind its
selection as the statistical modeling technique of this study. In this study, we developed 60 RFDT models
corresponding to 60 mosaics normalized to the backscatter intensity at 60 different incidence angles.
The seven sediment grain size properties were the explanatory variables in all of the 60 models, while
the response variables were the backscatter intensity values derived from the individual mosaics normal-
ized to the backscatter intensity at 60 incidence angles. The statistical performance of the RFDT models
was evaluated using the bagging process (Breiman, 2001). When constructing each tree in the forest, about
two thirds of the randomly selected samples (in-bag samples) were used to build the tree; while the
remaining one-third of samples (out-of-bag, or OOB samples) were reserved for error assessment. These
OOB predictions were aggregated by averaging across all trees in the forest to give the overall prediction
accuracy for the RFDT model.

Table 1
Summary Statistics for All Sediment Samples (n = 564) Used in This Analysis

Statistic %Gravel %Sand %Mud MGS (μM) Sorting (μM) Kurtosis Skewness

Min 0.00 0.95 0.00 8.87 12.23 �0.44 �0.55
Max 96.18 100.00 99.05 1113.27 630.67 109.31 9.11
Mean 12.11 75.78 12.11 436.49 308.89 4.97 1.23
SD 17.55 23.51 18.44 213.69 128.64 6.69 0.88

Note. SD = standard deviation; MGS = mean grain size.
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To optimize the modeling performance, RFDT was used within a manual model selection process. After a pro-
cess of trial-and-error, the following RDFT parameters were set:

• Number of trees in the forest: 1000
• Maximum tree levels: 10
• Minimum size node to split: 5
• Random predictor control: square root of total predictors

The manual feature selection process, which is an iterative process, searched for the best combination of
explanatory variables that maximize the prediction accuracy. In the first iteration, only one (out of seven)
explanatory variable was added to the RFDT model. This was repeated for all seven explanatory variables
one by one. The explanatory variable for which we obtained the highest prediction accuracy (adjusted R2)
was retained in the RFDT model for the next iteration, and the accuracy value was recorded. Similarly, in
the second iteration, we iteratively added one of the remaining six explanatory variables to the RFDT model
and chose the one that achieved the highest prediction accuracy. Each of the following iterations selected a
different explanatory variable from the remaining explanatory variables. The iteration process was stopped
when there was either no further improvement in prediction accuracy or all explanatory variables had been
added to the model, whichever happened first. For each response variable, the final RFDT model was the one
using the best combination of explanatory variables.

4.4. Important Sediment Variables and Sediment-Backscatter Curves

RFDT has the ability to identify and rank the importance of the explanatory variables (e.g., the sediment grain
size properties in this study). This is achieved by summing the improvement in accuracy gained by each split
that used the explanatory variable. The importance score (IS) for the most important explanatory variable is
assigned a value of 100. Other explanatory variables have lower scores, scaled accordingly (Sherrod, 2008).
For the important explanatory variables, we can construct predicted relationship curves between them
and the response variables (e.g., acoustic backscatter intensity at individual incidence angles). The purpose
of these curves is to help the interpretation of modeled relationships in a quantitative way (Gogina et al.,
2010; Huang et al., 2012; Huang, Siwabessy, et al., 2014). In this study, the relationship curves (e.g.,
sediment-backscatter curves) were predicted only for those sediment properties with ISs greater than 50.

For each of the seven sediment grain size properties, we constructed an artificial data set to predict the
sediment-backscatter relationship curves. The artificial data set had 101 rows and 7 columns. Using the
%gravel variable as an example, the column for the %gravel attribute has values ranging from its minimum
(i.e., 0) to its maximum values (i.e., 100) with equal increments. The minimum and maximum values were
obtained either from the sediment samples (e.g., for MGS, sorting, kurtosis, and skewness variables; Table 1)
or from the theoretically lowest and highest bounds (e.g., for the %mud, %sand, and %gravel variables). The
value of any of the remaining columns was kept constant as the mean value of the respective sediment grain
size property. The artificial data set was then fed to the selected final RFDT model to predict the acoustic back-
scatter intensity as a function of %gravel.

5. Results
5.1. Univariate Analysis

The relationships between the seven sediment variables and the backscatter intensity from the mosaic nor-
malized to the backscatter intensity at incidence angle of 25o are shown in Figure 2. These plots were fitted
with one of three functions: linear, polynomial, or logarithmic (for least squares fits). Among these relation-
ships, the strongest correlation occurs between %mud and the backscatter intensity (R2 = 0.51), which indi-
cates a clear negative relationship when fitted with a polynomial function, whereas the relationship between
MGS and backscatter intensity is also strong but positive, with R2 = 0.41. The skewness parameter and %sand
also have notable correlations with the backscatter intensity, with negative and positive correlations, respec-
tively. Kurtosis and sorting have relatively weak relationships with the backscatter intensity. In contrast, there
is a very weak correlation between %gravel and the backscatter intensity (R2 = 0.06; Figure 2a). Univariate
analyses from other incidence angles indicate similar sediment-backscatter relationships and thus are not
detailed here.
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5.2. Modeling Results

For incidence angles between 1° and 41°, the RFDT models achieved fairly good performance based on the
OOB assessment, with percentages of variance explained around 70% (Figure 3). The model’s predictive per-
formance gradually decreased for the outer beam range (incidence angle> 41°), until reaching the minimum
of 48% variance explained at the incidence angle of 58°.

Figure 2. Univariate analysis; (a) gravel (polynomial fitting); (b) sand (logarithmic fitting); (c) mud (polynomial fitting);
(d) mean grain size (logarithmic fitting); (e) sorting (polynomial fitting); (f) kurtosis (polynomial fitting); (g) skewness (linear
fitting).
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The results of the manual feature selection process show that both %mud and sorting variables have been
selected in all 60 RFDT models (Table 2). The sediment variables of %gravel, kurtosis, and MGS were also fre-
quently included. The %sand variable was selected over 50% of the time, while the skewness variable was
rarely used in the final models. The final RFDTmodels used between four and six (out of seven) sediment vari-
ables to achieve the highest predictive accuracy.

The %mud variable was consistently identified as the most important sediment variable controlling the back-
scatter response at all incidence angles (Table 2). Between incidence angles of 3° and 51°, the RFDT identified
the MGS variable as second ranked, with a mean IS of 61.3. Outside this range of incidence angles, the sorting
variable was more likely to be the second ranked parameter. Overall, the %mud variable was most important;
the MGS variable was the second most important (Mean IS in Table 2). This was followed by the sorting vari-
able, then the kurtosis, %gravel, and %sand variables. The skewness variable was not important at any
incidence angle.

5.3. Predicted Sediment-Backscatter Curves

Here we present sediment-backscatter modeled curves for those variables ranked as important in the RFDT
modeling process (i.e., IS > 50). Thus, for the %mud-backscatter relationship we find the predicted curves
from all 60 RFDT models show similar shapes within a standard deviation from the mean of ~4 dB
(Figure 4a). This curve indicates a negative but nonlinear relationship, whereby with increasing mud content
the backscatter intensity decreases. The total reduction is around 12 dB.

The MGS variable was identified by the RFDT models as an important sediment variable for backscatter
response between incidence angles of 2° and 51°. Again, the predicted MGS-backscatter curves from these
50 models show similar shapes, within a standard deviation of ~3 dB (Figure 4b). This curve indicates a
positive but nonlinear relationship when MGS is finer than ~330 μm (medium sand), with a total increase
of over 7 dB. There is likely a plateauing effect between MGS and backscatter return, when MGS is larger
than ~330 μm.

Although the sorting variable was used by all of the 60 RFDT models, it was identified as an important sedi-
ment variable for backscatter response for a limited range of incidence angles only: 1–3°, 49–50°, 52–57°, and
59°. Among these, the predicted sorting-backscatter curves for incidence angles 1–3° are similar in shape
with a standard deviation of 0.4 dB that describes a varying relationship between sorting and backscatter
intensity (Figure 4c). Thus, for well-sorted sediment (sorting <~100 μm), backscatter intensity increases by
about 1.7 dB toward slightly less well-sorted sediment. In the moderately sorted range (~100 to ~400 μm),
sediments incur a uniformly strong backscatter intensity of ~�16 dB. In the poorly sorted range (~400 to
~650 μm), backscatter intensity decreases markedly to ~�30 dB for very poorly sorted sediment. For inci-
dence angles greater than 49°, backscatter intensity follows a slightly different pattern with sediment sorting
within a standard of ~1.5 dB, only with much weaker overall intensity (Figure 4d). Thus, the curve represent-
ing the mean of nine sorting-backscatter curves greater than 49° shows that when the sorting value is less

Figure 3. The percentages of variance explained (R2s) based on the out-of-bag assessment of the 60 random forest deci-
sion tree models. The line indicates the R2s of the final models. The bars indicate the R2s from the models that used only
first two sediment variables selected by the manual feature selection process. MGS = mean grain size.
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than 250 μm, reduced sediment sorting only incurs a slight rise of backscatter intensity (~0.7 dB), further
decreasing sediment sorting to ~550 μm sees an overall reduction of backscatter intensity by over 6 dB.

The kurtosis variable was identified as an important sediment variable for backscatter response between a
narrow range of incidence angles between 55° and 57°. The predicted kurtosis-backscatter curves from these
three models show similar shapes within a standard deviation of ~0.8 dB (Figure 4e). The mean kurtosis-
backscatter curve indicates an initial steep decline of backscatter intensity of ~3.5 dB, when the kurtosis value
increases from �1 to 5. This is followed by a gentle decline of over 2 dB in the kurtosis range of 6 and 26.
Further increasing sediment kurtosis would not affect backscatter intensity. Between the kurtosis values of
�1 and 26, the overall trend of the kurtosis-backscatter relationship is negative, with a total reduction of
backscatter intensity by over 5 dB (Figure 4e).

The%gravel variable was identified as an important sediment variable for backscatter response between inci-
dence angles of 57° and 60°. The predicted gravel-backscatter curves from these four models show more or
less similar shapes within a narrow standard deviation of 1 dB (Figure 4f). The mean gravel-backscatter curve
indicates an initial steep decline of backscatter intensity by over 6 dB, when sediment gravel content
increases from 0% to 3%. Between sediment gravel content of 3% and 13%, there is a slight rise of
~0.3 dB, followed by a dip of ~1 dB to 16%. When sediment gravel content increases from16% to 100%, there
is a very slow rise of ~2 dB.

The %sand variable was identified as an important sediment variable for backscatter response only at the
incidence angle of 2°. The predicted sand-backscatter curve is displayed in Figure 4g. In general, when sand
content is lower than 40%, increasing sediment sand content does not appear to affect backscatter intensity.
Between sediment sand content of 40% and 60%, there is a steep rise of backscatter intensity by ~ 6 dB.
Further increasing sand content in sediment would not further increase backscatter intensity.

6. Discussion

The backscatter strength at the water-sediment interface is controlled by five geoacoustic parameters; the
sound velocity ratio (ν) and density ratio (ρ) parameters determine the acoustic impedance contrast (hard-
ness); the loss parameter (δ) determines the sound attenuation (penetration) in sediments; the spectral
strength (ω2) and spectral exponent of bottom relief (γ) determine the interface roughness (Fonseca et al.,
2002; Jackson et al., 1986). The volume backscatter, on the other hand, is controlled by the ratio of two para-
meters: the volume scattering cross-section parameter (σv) and the absorption parameter (ɑb; Jackson et al.,
1986). According to the geoacoustic model of Jackson et al. (1986) and some in situ measurements (e.g.,
Fonseca et al., 2002; Jackson & Briggs, 1992; Richardson & Briggs, 1996), the interface scattering increases
with sediment grain size due to the increase of acoustic impedance contrast and roughness. The relationship
between volume scattering and sediment grain size is a bit more complicated. According to equation (9) and
Figure 19 in Hamilton (1980), there is a unimodal relationship between sediment grain size and absorption
parameter (ɑb). From very fine to medium-grained sediment, increasing grain size would increase the absorp-
tion parameter, but at the same time the scattering cross section would also increase due to the increase of
sediment heterogeneity. Therefore, we can reasonably assume that the volume scattering due to σv and ɑb
would remain nearly constant in this range of sediment grain sizes. When sediment grain size increases from
medium to very coarse, we would assume that the volume scattering σv and ɑb would increase because of
the decreasing absorption parameter in combination with increasing sediment heterogeneity (Hamilton,

Table 2
Modeling Results Concerning the Sediment Variables

Measurement %Mud %Sand %Gravel MGS Sorting Kurtosis Skewness

Times used by RFDT 60 34 55 52 60 54 5
Times identified as important 60 1 4 50 12 3 0
Min IS 100 0 0 0 35 0 0
Max IS 100 68 63 67 68 56 41
Mean IS 100 25.9 28.3 52.5 44.2 29.7 3.0

Note. MGS = mean grain size; IS = importance score.
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1980). However, the volume scattering actually received by the sonar is also strongly affected by the acoustic
penetration (δ) into the sediment which in turn is controlled by sediment hardness, acoustic frequency, and
sediment acoustic absorption (Jackson et al., 1986). In general, the volume scattering due to δ decreases with
increased sediment grain size because of greater acoustic reflectivity (i.e., hardness). However, with the use of
high-frequency energy (300 kHz) in this study, the acoustic penetration in coarse sediment is likely to be very
limited (Richardson & Briggs, 1996; Simons & Snellen, 2008). As a result, from very fine to medium-grained
sediment the total volume scattering due to σv, ɑb, and δ is likely to decrease with the increasing MGS.
When sediment grain size increases from medium to very coarse, the total volume scattering is either very
small due to very limited acoustic penetration or remains nearly constant because the increasing volume

Figure 4. Predicted sediment-backscatter curves; (a) mean mud-backscatter curve for the incidence angles 1–60°; (b) mean grain size-backscatter curve for the
incidence angles 2–51°; (c) mean sorting-backscatter curve for the incidence angles of 1–3°; (d) mean sorting-backscatter curve for the incidence angles of
49–50°, 52–57°, and 59°; the bars indicate the standard deviations; (e) mean kurtosis-backscatter curve for the incidence angles 55–57°; (f) mean gravel-backscatter
curve for the incidence angles 57–60°; (g) sand-backscatter curve for the incidence angle of 2°; the bars indicate the standard deviations.
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scattering due to σv and ɑb cancels out the decreasing acoustic penetration. The above explanation supports
our finding of the initial clearly positive relationship and the subsequent plateauing effect or slightly positive
relationship between sediment MGS and backscatter return, which is the combination of interface scattering
and volume scattering (Figures 4b and 2d). This positive MGS-backscatter relationship is also supported by a
number of previous studies (e.g., Collier & Brown, 2005; Davis et al., 1996; Ferrini & Flood, 2006; Goff et al.,
2000; Huang, Siwabessy, et al., 2014; Ryan & Flood, 1996).

Similarly, the interface scattering decreases with the increase of sediment mud content due to the decrease
of acoustic impedance contrast and roughness (Jackson et al., 1986). In sediment, increasing mud content
would likely increase volume scattering due to δ because of greater acoustic penetration. This increase, how-
ever, would be limited, especially for coarse sediment with small mud content due to the use of high-
frequency energy (300 kHz). In fine sediment, the increasing mud content would decrease both the volume
scattering cross-section due to the decrease of sediment heterogeneity and the absorption (Hamilton, 1980),
which likely results in nearly constant volume scattering due to σv and ɑb. Therefore, in fine sediment, the
increasing mud content would likely increase total volume scattering. In coarse sediment, volume scattering
due to σv and ɑb is likely to decrease with increasing mud content because of increasing absorption and
decreasing cross-section scattering (Hamilton, 1980). This is likely to result in nearly constant or slightly
decreasing total volume scattering with the increased mud content. Consequently, combining the contribu-
tions from the interface scattering and volume scattering would result in negative and flat (or slightly nega-
tive) relationships between sediment mud content and backscatter return in coarse and fine sediments,
respectively. The finding of this study (Figures 4a and 2c) supports this explanation. Indeed, some of previous
studies (e.g., De Falco et al., 2010; Goff et al., 2004; Huang, Siwabessy, et al., 2014; Sutherland et al., 2007) also
support the negative Mud-Backscatter relationship.

Sediment sorting was the third most important variable resulted from the predictive modeling (Table 2). The
sorting-backscatter relationships identified at near nadir and outer beams (Figures 4c and 4d) requires some
interpretation. Both the univariate analysis at incidence angle of 25° and the predictive models at incidence
angles 1–3° indicate that the sorting-backscatter relationship is likely to be unimodal (Figures 4c and 2e).
Sorting (standard deviation) is a measure of sediment grain size heterogeneity. Decreased sediment sorting
can be the result of greater proportions of either coarser grains or finer grains. In the case of increasing coar-
ser grains, we would expect an increase in backscatter return, while in the case of increasing finer grains, we
would expect a decrease in backscatter return. Neither case, however, explains the unimodal distribution
observed, which is driven by samples with a backscatter intensity in the range �30 to �50 dB (Figure 5a).
The majority of the samples in this very low backscatter range are from the Oceanic Shoals study area where
mud content is highest among all the study areas. Removing the Oceanic Shoals samples results in a nearly
flat or slightly positive sorting-backscatter relationship, with a poor correlation (Figure 5b), while the Oceanic
Shoals samples alone have amuch stronger positive sorting-backscatter relationship (Figure 5c). This we attri-
bute to the higher mud content (47 ± 21%) than those in the other three study areas (9 ± 12%). At small inci-
dence angles (1–3°; near nadir), backscatter strength is dominated by the impedance contrast (or hardness),
but this decreases very quickly with soft sediment (Ferrini & Flood, 2006; Jackson et al., 1986). This of course
explains the much lower backscatter intensity of these muddy samples (Figure 5c). Therefore, we can reason-
ably state that a unimodal sorting-backscatter relationship (with flat top in the moderately sorted range) is
plausible provided that a sufficient number of samples with diverse grain size properties are used to derive
the relationship, a key advantage of this study. Using only samples from one local area may result in a mis-
leading sorting-backscatter relationship. At the outer beams, beyond the critical angle, interface scattering
due to roughness is becoming the sole contributor to backscatter strength (Jackson et al., 1986; Jackson &
Briggs, 1992). Decreased sediment sorting, if it is the result of increasedmud content, would reduce backscat-
ter intensity because of the decreasing interface roughness. For the Oceanic Shoals muddy samples that have
much lower backscatter intensity, this could again lead to the negative Sorting-Backscatter relationship in
Figure 4d after 250 μm.

Statistically, kurtosis measures the tailedness of the probability distribution. Higher kurtosis indicates heavier
tails. For our sediment data sets, samples with larger kurtosis are more likely tailed towards higher mud con-
tent because of the positive relationship between kurtosis andmud content (r = 0.42). This thus could explain
the negative kurtosis-backscatter relationships identified in Figures 2f and 4e, which was predicted at
outer beams.
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In this study, among all sediment properties, gravel content has the lowest correlation with backscatter inten-
sity (Figure 2a). The gravel content was identified as an important contributor to backscatter intensity only at
the farthest end of the outer beams (57–60°). The general trend of a positive gravel-backscatter relationship
(Figures 2 and 4f) is reasonable because of the increased interface scattering with higher gravel content.
However, the steep and uncharacteristic dip of backscatter intensity at lower gravel content (<3%), predicted
by the model, could not be reasonably explained. The overall result in this study indicates that gravel content
is not a good predictor of backscatter intensity. A much larger data set and further studies, however, are
required to validate this implication.

The sand-backscatter relationship identified at the incidence angle of 2° seems to indicate a boundary con-
dition of around 50% sand content, above which the backscatter return is strong and below which the back-
scatter return is around 6 dB weaker (Figure 4g). Examining the data reveals that, in general, the sediment
samples with less than 50% sand content have much higher mud content (37 ± 33%) than those samples
with more than 50% sand content (8 ± 10%). This could explain the sand-backscatter relationship identified
at this nadir angle (Figure 4g).

The above findings clearly indicate that mud content plays a key role in sediment-acoustic relationship. This is
consistent with the fact that the %mud variable was the most important sediment variable controlling the
backscatter return (Table 2). Importantly, in this data set the %mud variable alone explains around 40% of
predictive variance for the incidence angles smaller than 41° (Figure 3). With the addition of MGS the predic-
tive variance at this incidence angle range increases to 60% (Figure 3). Adding the remaining sediment vari-
ables only achieves minor improvements in model performance (Figure 3). On the other hand, at large
incidence angles, especially beyond the critical angle, the model performance degraded quickly and the pre-
dicted sediment-backscatter relationships become less reliable. It is therefore reasonable to assume that the
sediment-acoustic relationship is mostly due to the combined influence of sediment mud content and MGS.

To examine how the interaction between the sediment mud content and MGS affects the acoustic backscat-
ter response, a two-variable (%mud + MGS) RFDT model was generated for the incidence angle of 25°. The
model explained 61.6% of the variance, with the variable ISs of 100 and 72 for the %mud and the MGS vari-
able, respectively. An artificial 10 × 10 data matrix (%mud: 5, 15, 25,…, 95; MGS: 50, 150, 250,…, 950 μm) was

Figure 5. Scatter plots between sorting and backscatter intensity at the incidence angle of 1°; (a) samples from all four study areas; (b) samples from three study areas
except Oceanic Shoals; (c) samples from the study area of Oceanic Shoals.
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fed to themodel to predict the backscatter intensity values. Figure 6a indicates that sediment MGS influences
the mud-backscatter relationship, for example, when sediment MGS is larger than 450 μM, the %mud-
backscatter relationship is no longer negative but unimodal. On the other hand, sediment mud content
also influences the MGS-backscatter relationship, for example, when mud content is larger than 25%, a
clearly positive MGS-backscatter relationship was found within the entire range of sediment MGSs instead
of a plateau effect found for smaller mud content (Figure 6b). The 3-D surface plot (Figure 6c) clearly
shows that the strongest backscatter return occurs for muddy coarse sand (35–65% mud and MGS
> = 750 μm) and the weakest backscatter return occurs for silty mud (> = 75% mud and MGS <50 μm).

Apart from%mud andMGS, which were identified as important variables across most incidence angles, other
sediment variables were identified as important either at near nadir (%sand and sorting) or at outer beams
(%gravel, sorting, and kurtosis; Figure 4). The acoustic physics underlying the backscatter intensity at near
nadir and outer beams is well known (e.g., Hamilton, 1980; Jackson et al., 1986). However, due to the relatively
narrow angular ranges within which these sediment variables were identified as important, we require cau-
tion in the interpretation of the sorting-backscatter, kurtosis-backscatter, gravel-backscatter, and sand-
backscatter relationships offered above. In particular, the backscatter strength decreases quickly in the outer
beam range, which reduces the signal-to-noise ratio. Indeed, the gradual decrease of OOB R2 values beyond
41° (Figure 3) was likely due to the reduction of the signal-to-noise ratio. This relatively low signal-to-noise
ratio could raise some uncertainty over the sediment-backscatter relationships predicted at the outer beam
range (Figures 4d–4f).

7. Conclusion

This study demonstrates the effectiveness of a multivariate statistical approach for the investigation of the
sediment-acoustic relationship. Using a large sample set of colocated sediment and multibeam backscatter
data collected from diverse sedimentary environments has allowed us to examine the sediment-acoustic
relationship across a wide range of physical properties. The key findings of this study include the following:

1. Sediment mud content is the most important sediment variable and has a significant negative relation-
ship with backscatter intensity.

Figure 6. The influence of the interaction of sedimentmud content andmean grain size (MGS) on the backscatter intensity; (a) the influence of sediment MGS on the
mud-backscatter relationships; (b) the influence of sediment mud content on the MGS-backscatter relationships; (c) 3-D surface plot on the mud-backscatter and
MGS-backscatter relationships.
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2. Sediment MGS is the second ranked sediment variable and has a positive relationship with backscatter
intensity.

3. Sediment mud content also plays a key role in sorting-backscatter and %sand-backscatter relationships.
4. For incidence angles between 1° and 41°, the sediment variables explain around 70% of variance in the

backscatter intensity.
5. The combined influence of sediment mud content and MGS can largely explain the sediment-acoustic

relationship.
6. The strongest backscatter return occurs with medium sediment mud content and large MGSs (or muddy

coarse sand).
7. The sediment-acoustic relationship beyond the critical angle could not been reliably resolved.

It should be noted that the seven sediment grain size properties used in this study are only proxies of the
sediment geoacoustic parameters including sound velocity, density, absorption, roughness, and volume het-
erogeneity. It is likely that this use of proxies instead of direct drivers has accounted for a proportion of the
unexplained variance in the modeling accuracy. The potential violation of the homogeneity assumption
within the 30-m buffers of some sediment sample locations may also contribute to some of the unexplained
variance. The relatively high modeling accuracy (~70% of variance explained), however, indicates that sedi-
ment grain size properties are effective proxies of geoacoustic parameters. Importantly, the sediment grain
size properties can be measured much more easily than other sediment properties. In fact, the sediment
grain size properties have been routinely collected during marine surveys. This creates opportunities for
wider application of the statistical approach used in this study for the future more comprehensive investiga-
tion of sediment-acoustic relationship.
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