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• Plastics were transported among the
Earth's Four Spheres via multiple path-
ways.

• Anthropogenic activities affect all sections
of plastic transportation.

• Large scale and long-term transportation
of plastic should be addressed in future.

• Waste degradation matters the plastic
transportation.
⁎ Corresponding author.
E-mail address: hhshi@des.ecnu.edu.cn (H. Shi).

http://dx.doi.org/10.1016/j.scitotenv.2022.154884
Received 7 December 2021; Received in revised form
Available online 28 March 2022

0048-9697/© 2022 Elsevier B.V. All rights reserved.
A B S T R A C T
A R T I C L E I N F O
Editor: Xuetao Guo
 The rapid development of modern society has largely increased the usage of plastic. Concerns arise when vast amount
of plastic waste has been generated and disposed. The accumulated evidences suggest that plastic waste in all the nat-
ural matrixes has become a global contaminant, principles such as geological and biogeochemical cycles for plastic pol-
lution have been proposed. Before a full estimation of plastic mass flow, however, the pathways, directions and
influences involved in plastic transportation are warranted to be addressed. We made this critical review based on
the quantitative and narrative approaches in plastic and microplastic sources, sinks and transportation at global and
historical scales. We also addressed the roles of anthropogenic influences in the global transportation of microplastic.
The hydrological, meteorological, oceanic and even biological progresses naturally influence the plastic cycle andflow
directions within the Earth's Four Spheres. Anthropogenic activities participated in all sections of plastic transporta-
tion, from sources to sinks. The contribution from anthropogenic activities remains unknown but several point sources
including primary emissions and landfills have been confirmed. The primary outcomes point out that plastic pollution
is highly complex issues in terms of natural and human-driven dynamics. We suggested that more efforts were needed
in seeking the key sections in plastic transportation between environmental compartments at a global scale.
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Fig. 1. Plastic pollution as one of the global environmental issues.
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1. Introduction

Plastic products might be one of the most important inventions due to
their cheap price, light weight, usefulness and durability. Nowadays, plastic
wastes have become a global concern because of their accumulation in
open oceans and their potential ecological and human health risks
(Borrelle et al., 2020). It is estimated that 6300 million tons of plastic
waste has been generated and 79% of them are associated with landfills
or accumulated in natural environments (Geyer et al., 2017). If current
waste management systems do not change, the land-based plastic waste en-
tering the open oceans are estimated to increase by an order of magnitude
by 2025 (Jambeck et al., 2015). The fates of pelagic plastics on the sea sur-
face remain unclear given the diversities in the mechanisms of vertical and
spatial transportations (Law et al., 2010).What's more, the small-sized plas-
tic debris derived fromprimary and secondary sources are ubiquitous in the
nature, and may potentially pose an impact on the ecosystem (Law et al.,
2014; Seltenrich, 2015). The first report on primary plastic particles can
be dated back to 1972 when Carpenter and Smith observed large amounts
of pelagic pellets in Sargasso Sea. Meanwhile, the term of microplastic was
firstly used in a pilot study for sediments in 2004 (Thompson et al., 2004).
Although a strict definition of cut-off size for microplastics is absent, 5 mm
is usually set as an upper limit for microplastic (Hidalgo-Ruz et al., 2012).
Global concerns about microplastics and their associated pollutants in bi-
otic and abiotic fractions raised in the recent decades (Bank and Hansson,
2019; Galloway et al., 2017).

For both scientific communities and public media, plastic pollution in-
cluding microplastic and nanoplastic has received a lot of attention in the
recent two decades. Plastic pollution was ubiquitous with a global distribu-
tion and meets two critical conditions for a planetary boundary threat
(Villarrubia-Gómez et al., 2018). Also, it was largely an irreversible pollu-
tion issue as long as human being continues to rely on fossil energy (Ford
et al., 2022). Plastic dynamics in environments substantially alter the
mass-balances of natural elements given their features in chemical stable.
The health risks caused by plastic pollution were also largely concerned
in terms of toxic chemicals and physical damage (Barboza et al., 2018;
Wright and Kelly, 2017). Particularly, the smaller particles such as micro-
and nanoplastics were believed to pose more threats than larger ones due
to the size effects (Lehner et al., 2019; Mitrano et al., 2021). Inhalation, in-
gestion and skin contact were three primary routes for small microplastics
and nanoplastics entering human bodies (Yee et al., 2021). Though their
threatens to ecosystems and humans need to be further addressed, plastic
have been regarded as global environmental issues following global
warming, ocean acidification and ozone depletion (Lamb et al., 2018;
Mumby, 2017). Such an issue was featured by global distribution, increas-
ing amounts and significant impacts on our planet (Fig. 1). Additionally,
some viewpoints have considered weathering plastics as planetary bound-
ary threat in terms of chemical and particle pollutions (Arp et al., 2021).
As such, the researches on plastic andmicroplastic pollution should be con-
ducted at global scales including the full descriptions from sources to sinks
(Rochman, 2018; Schmidt et al., 2017). As plastic pollution is discovered
in almost all collections of the ecosystems, their dynamics between en-
vironmental matrix are increasingly concerned (van Wijnen et al.,
2019). Meanwhile, a full description of the plastic dynamics at global
and geological scale remains unclear. It will be helpful to develop new
approaches and conduct mitigation strategies to solve such global envi-
ronmental issues.

We need firstly clarify the pathways regarding global transportation of
plastics when considering they as global issues. In the previous studies, re-
searchers have drawn some important conclusions about the sources and
sinks of plastics and microplastics in marine environments. For example,
the major part of plastic pollution in the sea has been attributed to the plas-
tic waste from land-based sources which varied spatially in waste manage-
ments and gross production (Jambeck et al., 2015). Certain amounts of
marine debris are directly linked to land-based sources and all kinds of
water-ways. They acted as transportation pathways for plastic particles of
all size categories (Schmidt et al., 2017; Lebreton et al., 2017). For small-
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sized microplastics, the transportation is conducted in diverse pathways
which are not limited by hydrological process.

Incorporating the concepts of element and geochemical cycles, some
researchers also proposed the idea of global cycle for plastic pollution.
Zalasiewicz et al. (2016) proposed a term “geological cycle of plastic”
and suggested the use of plastics as a stratigraphic indicator of the
Anthropocene. Bank and Hansson (2019) suggested that the plastic pol-
lution could be reconsidered in the conceptual framework of biogeo-
chemical cycle. Plastics are now frequently proposed as emergent
geomaterials and tracers in earth systems linking with carbon cycles
(Arp et al., 2021; Gonzalez-Pleiter et al., 2021; Mitrano et al., 2021).

Some questions remain unanswered when it comes to the global
transportation of plastics between environmental matrixes, e.g., the
mass imbalance of all plastics wastes and artificial materials (Eriksen
et al., 2014). The newly proposed concepts such as “geological cycle”
and “biogeochemical cycle” provide an alternative in quantifying the
gross plastics mass on the earth systems. Unfortunately, these concepts
are still at hypothesis stage, which need to be refined through more in-
vestigations, experiments and model approaches in the future. Plastic
pollution is also a highly complex issue related to multiple fields
(e.g., environment, ecology, geography, etc.) and multiple aspects
(e.g., academic research, public reorganization, international negotia-
tion, etc.). It requires us to consider it from a global scale and historical
perspective. We thus made this critical review based on the quantitative
and narrative approaches in plastic and microplastic sources, sinks and
transportation at global and historical scales with the highlights of An-
thropogenic activities. We also tried to identify several key sections and
hotspots involved in global transportations of microplastics. By com-
pared to the mass estimation, we would more like to address the princi-
ple pathways and influences regarding to the plastic and microplastics
within the Earth's Four Spheres.
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2. From fossil fuel to polymer products and plastic waste

2.1. A brief history of polymer industry and plastic pollution

There has been a long history for the polymer industry (Fig. 2). The term
“plastic” comes from the Greek verb “plassein” that refers to “mold or
shape”. Indeed, most of thermoplastics are able to be shaped due to their
morphological features at molecular scales, i.e., long and flexing chains of
molecules growing in similar patterns. Natural materials, such as plant cel-
lulose, were also initially used in the production of “plastic”. The semi-
polymers based on cellulous and plantfiberwere created at 1800swhile Ba-
kelite was the first completely synthesized plastic made in 1907 (Meikle,
1997). The raw material for Bakelite comes directly from fossil fuel. Plastic
production was further developed during World War II when they were
used as wire insulation. Plastic demands have been growing rapidly since
the 1950s owing to the invention of the typical polymers such as polyester
and polyvinyl chloride. Polymers got an unprecedented inmaterial sciences
during the 1950s–1960s when people believed that most of the natural ma-
terials could be replaced by polymers (Mulder, 1998).

Most of the modern plastics are polymerized by hydrocarbon molecules
whichwere derived from oil refining and natural gas. Theworld plastic pro-
duction reached 368million tons in 2019. In consideration of the growth in
population and market size, plastic production is predicted to triple by
2050 (Hale et al., 2020). On the other hand, the raw materials involved
in plastic productions have shifted from pure fossil fuel to biota-based ma-
terials (Abdelmoez et al., 2021). A production cycle of plastics were gener-
ally established within the key elements on the earth.

As introduced, the fossil fuel based polymer faces public scrutiny due to
their potential threat to eco-systems and even human health. Nowadays,
the industry is seeking to modify the plastics with new properties and raw
materials given the sustainability in polymer industries. The “bio-based”
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Fig. 2. A flowchart for the history of plastic production and its biochemical cy
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and “biodegradable” plastics are hereby set to replace the persistent ones
in various applications. Nevertheless, the fossil fuel will continue to domi-
nate the raw material for plastic industries, and a cut of plastics usage is
not possible in the near future. The so called “plastic age” is generally ac-
cepted by our industrialized society following the Stone Age, the Bronze,
and the Iron Age (Fig. 3).

A series of published works have reviewed the history of plastic and
microplastic pollution research at global scales (Allen et al., 2022; Napper
and Thompson, 2020). In brief, the plastic pollution researches initially
concentrated at marine environments where the open oceans, beaches
and estuaries were of particular interests (Corcoran et al., 2009;
Thompson et al., 2004). Most of the early researches focused on the marine
plastic debris, primary pellets and fishery wastes (do Sul et al., 2009;
Gregory, 2009). Their influences on ecosystems have also been addressed
and most of studies were conducted along with diet analysis for marine
birds and fishes (Bourne, 1977; Cózar et al., 2014; van Franeker and Law,
2015). The so calledmicroplastic wasfirstly introduced at 2004 and it asso-
ciated researches has increased exponentially since 2009. There are now
extensive researches of microplastics pollution in Earth's Four Spheres
with the highlights of human health risks.With the developments of analyt-
ical chemistry and spectroscopy, more efforts have been paid in seeking the
small sized microplastics and nanoplastics in environments.

2.2. The generation and transportation of plastic waste

Along with the wide use of plastic products, it is inevitable that plastic
wastes are generated and discarded. According to themassflow estimation,
59% of the primary plastic products would be discarded and the rests were
either used stocks (30%) or recycled (7%) (Geyer et al., 2017). The amounts
of plastic waste are determined by gross plastic production and market de-
mands which are largely influenced by public crisis such as COVID-19
Plastic products
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(Adyel, 2020). The amounts and features of plastic waste highly varied
among regions and determined by primary production and waste manage-
ments. For example, global plastic emissions are predicated to vary one
order of magnitude in different scenario of management strategies
(Borrelle et al., 2020). Except for the recyclable ones, all plastic wastes
are utmostly end up in environments from lands to open oceans while the
mismanaged plastic waste leads to the pollution. Historical record for con-
tinued monitoring of plastic shows a significant increase in the presence of
marine plastics debris in recent decades (Ostle et al., 2019). Given the in-
creasing in plastic production, such an trend strongly supports the mass-
balance between plastic production and waste generation. While the
microplastic generation in production service has been sporadically re-
ported, e.g., the use of mask and plastic containers, the detailed mass esti-
mations remained missing in current observations.

In the fields of material engineering, the service life of a non-single-use
polymer product refers to the maximum service time before any significant
failures occur. Being discarded in the environments, the plastic waste will
experience a considerable period of natural aging (Corcoran et al., 2009).
The degradation in terms of geo-chemical, biological and physical mecha-
nisms would largely alter the fate of plastics in their full “life-span”.
Microplastic, for instance, can be considered as an initial stage between
the primary waste and their utmost degradation, which is more active in
transportation at large scales. Due to the limitation in technologies, it is
very difficult to determine the retention time of plastic waste and their
half-life period. This is also a major challenge when the “plastic age” in
the newly proposed terms “Anthropocene” is included (Autin, 2016). An-
thropogenic influence and natural disturbance play important roles in the
transportation and relocation of primary and plastics in the Four Spheres.
In each sphere, the specific mechanisms not only spatially change the pres-
ence of plastics but also determine their fates. The plastics in deep seas, for
example, are less mobilized.

3. Plastic transportation from sources to terrestrial systems

Most of the plastic waste is generated and disposed on land before
reaching aquatic environments. Therefore, the majority of plastic waste
can be retained in terrestrial environments and inland waters. However,
terrestrial environments have received less attention from the scientific
community compared to aquatic environments (Rillig, 2012). As reviewed
by Braun et al. (2021), soil amendments, plastic mulching, and irrigation
were important sources of plastic pollution in agricultural soils. Littering,
4

street runoff, and atmospheric input also contribute to the plastic pollu-
tion in soil even for remote areas. In recent years, plastic pollution in ter-
restrial environments has been increasingly reported (Baho et al.,
2021). Microplastics were found to accumulate in soils from urban
areas and agricultural fields, where they could be retained permanently
or temporarily (He et al., 2018). A verity of sources was suspected
linking with plastic pollution in terrestrial environments. Mobilization
of macro and microplastics in terrestrial environments could be affected
by precipitation, hydraulic characteristics, agronomic practices, biotur-
bation, and the characteristics of plastics (Guo et al., 2020). A theoreti-
cal model had been developed to describe the transport and retention of
microplastics by soils and river sediments, and results suggested that a
considerable fraction of the microplastics on land could be retained
but microplastics smaller than 0.2 mm were predicted to be more mo-
bile (Nizzetto et al., 2016).

Other than the lateral transport in terrestrial environment, macro and
microplastics can also be transported vertically. The vertical migration of
microplastics in sand soil was studied and the penetration depth was
found to be related to the plastic size and types, as well as wet-dry cycles
(Bank and Hansson, 2019; Kooi et al., 2017; O'Connor et al., 2019). Small
particle size and wet-dry cycle facilitated the vertical movement of
microplastics. After being transported into the deep soil layer, plastics be-
came more difficult to be washed away by surface runoff and were either
retained in the soil or had the potential to get into the groundwater system
(Mintenig et al., 2019).

Macro- and microplastics can also be retained in terrestrial environ-
ments by soil aggregates, vegetation covers, and manmade obstructions.
Small microplastics could get into the soil pores and form aggregate with
other soil components, which trap them in the soil (Yu et al., 2021). The
presence of plastics and microplastics in soil systems were confirmed
worldwide and great achievements had been made in quantification small
microplastics and nanoplastics in soil matrix in the nearest decades
(Braun et al., 2021; Guo et al., 2020; Rillig, 2012). Generally, microplastics
and plastics in soils were several orders of magnitudes greater than their
presence in the oceans. Recent evidence had proved the vertical transporta-
tion of microplastics and nanoplastics in the plants (Luo et al., 2022). The
adherence and adsorption of microplastics have also been observed in a
wide range of terrestrial and aquatic plants in field (Khalid et al., 2020).
The roots and leaves potentially concentrated microplastics from the envi-
ronments and the development of plants could also be impacted by
microplastic exposure (Huang et al., 2022). Despite of the field evidences,
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the mechanisms involved in microplastics transportation between plants
and soil systems remains unclear. Additionally, vegetation can act as buffers
for the transport of macro and microplastics. Although the removal of plas-
tics has not been investigated, it is well known that vegetative strips are ef-
fective in minimizing waterway pollution from non-point sources (Barling
and Moore, 1994). They provided buffer zones to increase the natural deg-
radation progress and diffuse the pollutants. Likewise, large plastics could
befiltered and trapped by vegetation covers. For example, it had been dem-
onstrated that mangrove forests can act as traps for marine litters, most of
which are made of plastics (Martin et al., 2019). Manmade obstructions
such as levee and fence can also block the transport pathways of macro
and microplastics from terrestrial environments to water but have not yet
received general attention.

4. Plastics transportation from the lands to the sea

Considering the contribution of rivers to marine microplastics, riverine
microplastic research has become a hot topic. The riverine transportation
also directly contributed the so called superimposed microplastic pollution
at estuary (Fig. 4). Microplastics have been surveyed in both large rivers
and small rivers in specific regions (de Carvalho et al., 2021; Xiong et al.,
2019). Abundance of plastic debris (including micro- and macro- plastics)
could range from less than 1 item/m3 to thousands items/m3 in different
studies, even in the same river (Blettler et al., 2019).

Studies attempting to evaluate the mass flow of microplastics from
river-nets to the ocean have already been carried out in both modelling
and actual studies. The modelling studies are more advanced than the ac-
tual studies. A modelling approach of plastic flux was firstly presented
from river nets into open oceans according to the database of waste gener-
ation, hydrological features and population sizes (Lebreton et al., 2017).
They estimated that up to 2.41 million tons of plastic waste enter the
open ocean per year from river nets and the severely polluted rivers (n =
20) account for 67% of the global total. Similarly, a study by Schmidt
et al. (2017) based on the plastic wastes without proper managements in
the catchment estimated that the global plastic debris inputs form rivers
to the sea ranged from 0.41 to 4 million tons per year and the top-ten pol-
luting rivers represented 88% to 95% of the global loads. Another more
elaborate model was used to analyze the riverine transportation of
microplastics from point-sources, but the study was limited in the regions
(Siegfried et al., 2017).

However, bias and limitations still existed in the above modellings. The
data fromfield studies to build and verify thesemodels are limited: Lebreton's
prediction was only based on 30 records from 13 rivers (Lebreton et al.,
diffuse sources

landfill

point sources

Fig. 4. Superimposed plastic pollution from point
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2017). Moreover, not all the sites of these rivers are suitable to evaluate the
flux into the sea asmost of these sites are far away from the river estuary. Dif-
ferent sampling methods greatly affect the result of microplastic abundances
(Zheng et al., 2021). For example, microplastic abundances from pump sam-
pling method would be much higher than those with trawl net sampling be-
cause the previous one used low cut-off size in filtering (Tamminga et al.,
2019). Mixed use of these data could undisputedly bring bias. In addition,
most researchers presented their results of microplastic abundances in rivers
as counts so that a conversion is needed to change the unit to mass (Lebreton
et al., 2017; Schmidt et al., 2017). However, the complicated composition
of microplastics makes it easy to introduce bias in the conversion. By
re-evaluating information on the morphology, size, and weight of in-
dividual plastic particles, Weiss et al. (2021) found that the riverine
flux of microplastics to the sea in previous studies might have been
overestimated by 2–3 orders of magnitude.

To minimize the bias in the previous modelling studies, researchers
tried to evaluate the flux of plastic debris through field observation in re-
cent studies. Fan et al. (2019) estimated that more than 15,000 tons of
microplastics released annually into oceans from the Pearl River, which is
similar to the modelling prediction. Eo et al. (2019) estimated the yearly
flux of microplastics in multiple river systems from South Korea and sug-
gested that up to 118 tons of plastics are riverine sourced. This result is
27-fold higher than the midpoint of the model prediction by Lebreton
et al. (2017). In contrast, anotherfield observation by Zhao et al. (2019) es-
timated that microplastic inputs from the Yangtze River to the sea was no
more than 905.9 tons in 2017, which is much lower than the prediction.
Through field monitoring in the Pearl River Estuary, combined with data
from other estuarine waters using similar methods, Mai et al. (2019) con-
structed a model based on new parameters, and the estimated flux results
are alsomuch lower than previous studies. The confusion of current estima-
tion implies that more studies and better methodology should be carried
out on river input of plastic debris to the sea. On the other hand, in order
to reduce the plastic export from land sources to seas, great efforts have
been paid to trap the floating debris from river-nets to estuary (Fig. 5).

5. Plastics transportation within the open ocean

5.1. From coastlines to oceans

Plastics were initially transported to estuaries and shorelines via
riverine transportation, surface runoff and extreme weather conditions
(Landon-Lane, 2018; McNicholas and Cotton, 2019). The suspected pollu-
tion hotspots exist along global coastlines, such as mega-cities in East
landfill

and diffuse pollution sources in the estuaries.
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Asian (Fok and Cheung, 2015; Lahens et al., 2018), Mediterranean regions
(Leslie et al., 2017; Vianello et al., 2013) and metropolitan areas in North
America (McCormick et al., 2016). Most of those hotspots encompass estu-
aries that provide accumulation zones for pelagic material received up-
stream. While contaminated beaches suffered from land-based pollutions,
the contributions of pelagic debris from seawater were also considerable.
If the particle dynamics of microplastics are similar to that of natural partic-
ulates, onshore deposition of microplastic is comparable to sediment accu-
mulation (Browne et al., 2011). Again, modelling approaches suggested
that floating debris fluxes are subjected to changes in currents, winds and
land formations i.e., the debris tended to accumulate in coastal circulations
and returned to shorelines (Liubartseva et al., 2016; Sherman and van
Sebille, 2016). Coastlines can also receive plastics traveling from long
away. For example, primary pellets were extracted fromwindward beaches
of the Archipelago, but no local plastic-production facilities exist (do Sul
et al., 2009).

Apart from settling on coastlines, buoyant microplastics and debris are
supposed to travel farway via ocean currents and accumulate on the surface
of seawater. The large system of rotating ocean currents (ocean gyres) was
Table 1
A summary of flux and repository of plastic and microplastics at global scale.

Targets Primary inputs of model

Plastic particles floating in the world's oceans from 2007 to 2013 Transoceanic microplastic s
Plastic waste inputs from land into the ocean at 2010 Solid wastes, population de
Small floating plastic debris at 2014 Surface-trawling plankton n
Primary microplastics in the oceans at 2017 Sources and leakages from e
Plastic waste generation at 2015 Mass balance between prod
River export of microplastics to the marine environment at 2000 Point-sources emissions
River export of microplastics to the marine environment at 2016 Waste management, popula

information
Pelagic microplastic abundance in the Pacific Ocean from 1957
to 2066

Transoceanic microplastic s

Plastic waste entering the aquatic ecosystems at 2016 Market demands and produ

a MT: million tons; TT: thousand tons.
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believed to be closely associated with marine material cycles (Martiny
et al., 2013; Subhas et al., 2020). Those floating materials originated from
mixed sources and accumulated in the convergence zones of the five sub-
tropical gyres with high density (Andrady, 2017; Cózar et al., 2014). The
so called “garbage patch” could be one of the most shocking scenes in the
field of marine pollution (Eriksen et al., 2013; Lebreton et al., 2018;
Lebreton et al., 2012). It acts as floating sources of plastics in open oceans
and vectors for a variety of microorganisms and persistent pollutants
(Nizzetto et al., 2016; Weinstein et al., 2016). Great efforts have been
paid on tracing those floating hotspots at the Atlantic Subtropical Gyre
and the Pacific Oceans for decades but it is still hard to predict the plastic
dynamics over large-scale transportation (Law et al., 2010; van Franeker
and Law, 2015). Moreover, microplastics have been confirmed in Arctic
Sea ice which is considered as alternative sinks and sources for pelagic
microplastics, especially in a global warming scenario (Bergmann et al.,
2017; Obbard et al., 2014). The accumulated estimation for the flux and re-
pository of plastic and microplastics at global scale were largely varied,
while a solid mass estimation still required more baseline data from real
world (Table 1).

5.2. The roles of sedimentation and bio-turbulences

When using the same measurements, microplastic concentrations usu-
ally differed by several orders of magnitudes between sediments and sea-
water. Sediments are hereby either temporary or permanent sinks for
microplastics and plastic debris (Rochman, 2018). Microplastics tend to
sink down onto the seabed despite their floating natures. For example,
the polypropylene with a low density could be found in more than 80%
of studies focusing on deep sea sediments (Van Cauwenberghe et al.,
2015; Van Cauwenberghe et al., 2013). In the mass-balance calculation,
a major part of “losing mass” was attributed to sedimentation process
which is promoted by biotic and hydrological influences (Clark et al.,
2016). Field evidences on the size distribution of floating plastics sug-
gested a mechanism of size-selective sinking, which could largely re-
move the floating plastic with small size from sea surfaces (Law et al.,
2010).

If the so called “plastic cycle” is a closed loop, most of the degradation
would ultimately occur in sediments. The occurrence of microplastic was
confirmed at a depth of 4881m on the seafloor while the vertical dynamics
involved remained unknown (Van Cauwenberghe et al., 2013). For larger
particles, biological fouling directly increased their density and helps the
particles to sink down (Fazey and Ryan, 2016; Kooi et al., 2017). For
smaller particles, in contrast, they could reach to the sea bottoms in the
form of aggregation of denser materials (Cole et al., 2016; Porter et al.,
2018). In addition, fragmentation of large particles in situ might play a
role because human activities in the abyss have been lasting for over 30
years (Chiba et al., 2018). Some studies focusing on sediment core sup-
ported that microplastics would be buried via bottom currents and sedi-
mentation process once they have settled on the surface of sediments
(Matsuguma et al., 2017). The relative abundance of microplastic at differ-
ent layers could hereby be used as an alternative geological marker.
Unita Estimation Reference

urveys data MT 0.3 (Eriksen et al., 2014)
nsity, and economic status MT 4.8–12.7 (Jambeck et al., 2015)
ets data TT 93–236 (Van Sebille et al., 2015)
conomic and household activities MT 0.8–2.5 (Boucher and Friot, 2017)
uction and use MT 6300 (Geyer et al., 2017)

TT 14.4 (Siegfried et al., 2017)
tion density and hydrological MT 1.1–2.4 (Lebreton et al., 2017)

urveys data per
km2

35,000–160,000 (Isobe et al., 2019)

ction mass MT 19–23 (Borrelle et al., 2020)
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The participation of marine organisms is proposed as an important
mechanism involved in plastic transportationwithin oceans, showing a pro-
longed impact on plastics' fates (Galloway et al., 2017; Gregory, 2009). If
plastic exposure didn't incur acute effects, they could be considered as alter-
native food or shelter for local inhabitants for a long period of time (Clark
et al., 2016; Galloway and Lewis, 2016; Lamb et al., 2018). In this way, ma-
rine organisms with non-selective filter-feeding behavior can ingest consid-
erable amounts of plastics, acting as a temporary carrier (Seltenrich, 2015;
Wang et al., 2021). This also occurs when vertebrates are incapable of dis-
tinguishing plastic particles fouled with food or with similar sizes to food
items (Bourne, 1977; Dabrowski and Bardega, 1984). Again, the filter-
feeding organisms are able to bring the microplastics from the water
column to the benthos, increasing their availability to sediment-dwelling
organisms (Dawson et al., 2018; Graham and Thompson, 2009). Incorpo-
rated in the metabolites, plastics in feces would stay on the surface of
sediment and readily participate in sedimentation (Franzellitti et al.,
2019). In the sedimentation, bioturbators could change the relocations of
microplastics at the water/sediment interface, mixing particles deeper
into the bottom sediments (Clark et al., 2016; Galloway et al., 2017). Con-
sidering vertebrates, fishes are the most abundant assemblages on Earth,
representing critical compartments of biomass in marine ecosystems.
With the increasing number of baseline investigations into plastic pollution
worldwide, case studies targeting fish continue to develop in terms of spe-
cies diversity, sampling sizes and the methodologies employed. According
to the most recent review works, 49%–65% of the fish species were
believed to ingest plastic and microplastics with 3.5–29.7 particle per indi-
vidual (Azizi et al., 2021; Markic et al., 2020; Wootton et al., 2021). Fur-
thermore, commercial fishing and human consumption of seafood can
bring the plastics from oceans back to lands (Miranda and de Carvalho-
Souza, 2016). Unfortunately, a numerical description of such a process is
unavailable due to lacking of baseline data such as polymer types, densities
and size distribution. In the future, we need to further address how and
whether the interactions of microplastic debris throughout the ecosystem
alter the geo- and biochemical cycle of plastics.

6. Plastic transportation in atmospheric pathways

6.1. Characteristics of plastic particles in the atmosphere

Due to their small sizes and lightweight properties, many microplastic
particles could become suspended and transported as urban dust (Abbasi
et al., 2017; Kitahara and Nakata, 2020). Such atmospheric transport of
microplastics was common in urban air (Cai et al., 2017; Klein and
Fischer, 2019; Wright and Kelly, 2017), and could even reach remote and
pristine areas (Allen et al., 2019; Bergmann et al., 2019; Brahney et al.,
2021). Collectively, previous studies highlighted the ubiquitous presence
ofmicroplastics in both dry andwet depositions. Atmosphericmicroplastics
were generally predominated by fibers, which account for more than 90%
of all items recovered (Bergmann et al., 2019; Cai et al., 2017; Dris et al.,
2016). However, fragments were found dominated in all microplastics
from atmospheric deposition in some specific areas (Allen et al., 2019;
Klein and Fischer, 2019). The length of the major fibrous atmospheric
microplastics has been found to be less than 1000 μm, with the longest
fiber of about 5 mm. Predominant fragment size was less than 100 μm
(Allen et al., 2019; Klein and Fischer, 2019; Zhang et al., 2020a). Abun-
dance of atmospheric microplastics varied between cities and remotes
areas, with a broad range of about 2–600 particles per /m2/day. It also de-
pendent upon different sampling or measurements (Chen et al., 2020).
Meanwhile, the variance in microplastics abundances are most likely re-
lated to factors such as the source, pathways, and reservoirs ofmicroplastics
in the environment.

6.2. Atmospheric transportation of microplastics

Certain amounts of atmospheric microplastics originated from roadside
dust and fibers in synthetic textiles (Abbasi et al., 2017; Liu et al., 2019a;
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Vaze and Chiew, 2002). Meteorological conditions such as storm water
events could facilitate the deposition of microplastic to the land surface
and/or ocean surface, which became an important contribution to
microplastics in terrestrial and aquatic environment (Dris et al., 2016;
Zhou et al., 2018). Small microplastic particles could be transported by
wind far from the origins (Allen et al., 2019; Bergmann et al., 2019). It is
urgent to simulate and evaluate the transport and deposition of atmo-
spheric microplastics from source to the target area as atmospheric
microplastics are abundant in various habitats. Air mass backward trajec-
tory analysis was considered as an effective method to qualitatively discuss
the potential source and transport of atmospheric pollutants. However, fu-
ture efforts should be paid in seeking more rigorous and efficient methods
to evaluate the mechanisms involved in transport and deposition of atmo-
spheric microplastics.

Atmospheric transport is an important pathway for microplastic deposi-
tion from source regions to soil and freshwater/oceanic surface (Bank and
Hansson, 2019; Evangeliou et al., 2020;Windsor et al., 2019).Microplastics
have been detected from atmospheric wet and dry deposition even in re-
mote and pristine mountain catchment (French Pyrenees) (Allen et al.,
2019). A previous study suggested that European snow was more contami-
nated by microplastics than Arctic snow, indicating that microplastics
carried through snow fallout from the atmosphere of Europe were related
to the contamination of sea ice and surface water in Arctic regions
(Bergmann et al., 2019). In the Antarctic, plastic pollution in a glacier
was also reported and they were likely deposited by wind transport
(Gonzalez-Pleiter et al., 2021). Meanwhile, the first study of microplastics
from glaciers preliminarily proved that microplastic contaminated the sur-
face of alpine glaciers (Ambrosini et al., 2019). Further, microplastic was
also detected in the Tibetan glaciers (Zhang et al., 2021).Mountain glaciers,
however, are usually considered as spotless pristine settings in cryosphere,
and the previous studies offered credible evidences and new perspectives
on atmospheric transport of microplastics. Atmospheric transport through
wind/snow/rainfall could be regarded as a remarkable route of
microplastics from urban areas to the marine and terrestrial environments
(Abbasi et al., 2017; Allen et al., 2019; Zhang et al., 2019). The atmospheric
transport is also considered as an important pathway for microplastics
transportation globally (Evangeliou et al., 2020). According to a prelimi-
nary estimation based on the field data, around 1.2 tons of small
microplastics would be annually transported to the marine environment
from the land sources (Liu et al., 2019b). However, the inland transporta-
tion of airborne plastics could be more active e.g., more than 1000 tons of
plastic were believed to deposit in western U.S. protected lands annually
(Brahney et al., 2020). Such a transport pathway could introduce atmo-
spheric microplastics into the trophic chain and impact ecosystems beyond
the source regions (Hale et al., 2020).

Some of atmospheric microplastics can be inhaled, which has caused an
increased public concern on this topic (Wright and Kelly, 2017). Due to the
pervasive persistent nature microplastics can be associated with other con-
taminants (e.g., POPs and metals), leading to health effects such as carcino-
genicity and mutagenicity (Barboza et al., 2018; Gasperi et al., 2018;
Rochman et al., 2015). On the other hands, the carrier of airborne
microplastics could be a unique transportation pathway over the large spa-
tial scales. Within “microplastic cycle” concept, the flux and retention of at-
mospheric microplastics within a wide range of environmental matrices
should be better understood, which is helpful to assess the risks of
microplastic on human beings in long-term exposure (Bank and Hansson,
2019).

7. Features of global transportation of plastics

7.1. Driving factors of the transportation pathways

The transportation pathways of plastics and microplastics within the
Four Spheres have been discussed from their sources to sinks. However,
on a global scale, it could be very difficult to trace the plastics transporta-
tion from sources to sinks. Despite the identification of several point sources
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and routine pathways such as wastewater treatment plants and river nets,
non-point sources and interlaced pathways dominate in most of the cases
(Abbasi et al., 2017; van Wijnen et al., 2019; Vaze and Chiew, 2002). The
major influences on such a journey are from both natural forces and anthro-
pogenic impacts. For natural forces, all mechanisms associatedwith particle
dynamics play important roles in the transportation process. As discussed,
the meteorological factors such as wind, rainfall and extreme weather
events govern the transportation of atmospheric plastics. For instance,
ocean current, riverine discharge and sedimentary process participate in
the distribution of plastics in aquatic systems (Allen et al., 2019;
Bergmann et al., 2019; Hurley et al., 2018). The natural forces in terms of
climate changes could even produce a dominant impact on the utmost
fate of natural systems (Parmesan and Yohe, 2003). The ocean current,
for instance, can overcome the riverine discharge and reduce the export
of microplastics from river systems to the open ocean in some cases
(Zhang et al., 2020b). Because of their irreversible nature, natural forces
should be viewed as constant influences in the distribution of plastics in en-
vironments.

On the other hand, the anthropogenic activities determined the waste
control and managements. At geological scale, in particular, the anthropo-
genic impacts meant a major disturbance of material balances on the
earth. Although more evidences were warranted, plastic presences in sedi-
ments cores could be good indicators of Anthropocene strata (Zalasiewicz
et al., 2016). Henceforth, human beings should thoroughly reconsider the
global plastic pollution issue, especially take other global environmental is-
sues together into consideration. For example, global warming was
regarded as the most challenging issue for human beings (Dai, 2013). It is
mainly caused by fossil fuels which have released greenhouse gases into
the atmosphere, thus disburdening the sunlight systems and air tempera-
tures (Bond et al., 2013). Likewise, plastic production is another way
for human to consume fossil fuels. It is well known that the earth is a rel-
atively stable system, and each substance keeps the balance. However,
when human beings change the world so quickly and greatly, the eco-
logical balance will be disrupted. Such impact is not regarding to the
toxicities, but to the amounts of the substance. Beyond the contribution
from sources, we need to pay more attention to the material disturbance
from plastics emission. Beyond the contribution from sources, we need
to pay more attention to the material disturbance from plastics emis-
sion.

7.2. Large scale and long-term transportation of plastic

When we look back on the transportation of plastics and microplastics
within the Four Spheres, particle relocation occurs not only in local regions
but also in large areas (Brahney et al., 2020). Such a phenomenon is very
common for small atmospheric microplastics (Fig. 6). The large-scale trans-
portation of microplastics and plastics increases the uncertainty when we
try to predict the spatial patterns and “hotspots” of pollutions. In terms of
sources diagnosis, the major contributors to the regional plastics pollution
could be from far away (Brahney et al., 2020). The Great Pacific Garbage
Patch, for example, was derived largely from shoreline contaminants re-
gardless of the offshore sources (Lebreton et al., 2018). Another evidence
was the observation of plastic bottles on the sea bottom. They
transported vertically from their land sources over large spatial scales
(Novikov et al., 2021; Ryan et al., 2019). The large-scale transporta-
tion must also be considered when estimating the gross plastics emis-
sion from rivers and estuaries which are transitional zones between
sinks and sources. In practice, emission control will be conducted
with relative low efficiency if only local pollution sources are consid-
ered. For instance, the field observations at catchment scale revealed
high abundance of microplastics around estuaries and suspected
sources, but the hydrodynamic and particle size analysis indicated a
long range transportation from upper to lower streams (Su et al.,
2020; Wang et al., 2018; Windsor et al., 2019).

In comparison with spatial patterns, the temporal trends for plastic and
microplastics within the Four Spheres received less attention. The plastic
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cycle can be briefly considered as a continuous flow and relocation of plas-
tic materials among all kinds of ecosystem compartments. Long-term trans-
portation is hereby critical in defining the continuous effects from plastics
contaminations. Despite the efforts in waste management, plastics in any
forms are continuously being emitted from various sources and are acting
as a material flow throughout the whole ecosystems. The observation at
large temporal scales has confirmed the variations in the trends of plastic
pollution in environmental matrix (Lebreton et al., 2018; Maes et al.,
2018). However, the long-term variations of plastics between environmen-
tal compartments remain unknown. More evidences from field-based mea-
surements are required to determine whether the transportation of plastics
can alter their relative distribution between environmental compartments
at large temporal scales. As a global issue, more efforts should be made to
address the prolonging effects and fates of plastics pollution at large spatial
and temporal scales.

7.3. Physicochemical changes of plastics in transportation process

The physicochemical changes of plastics in spatial transportation had
too often been ignored in field observations (Garvey et al., 2020; ter Halle
et al., 2016; ter Halle et al., 2017). It was proved that natural weathering
and aging effects could promote the generation of secondary microplastic
and alter the structure of large debris (Arp et al., 2021; ter Halle et al.,
2016). By compared to the larger ones, the secondary particleswith smaller
sizes readily settled down and accumulated in local regions (Weinstein
et al., 2016). However, little is known to the mass loss of large particles in-
curred by natural exposure such as ultraviolet rays, heat and biological dis-
turbance. In the modelling approaches, weathering and aging are seldom
considered as dynamic influencing factors although they could have signif-
icant influences on the behavior of large particles. Particularly, fragmenta-
tion progress directly increased the number of particles presented in all
pathways regarding the global transportation of plastics and microplastics
(Corcoran et al., 2009). We thus need to measure the generation of second-
ary microplastics under natural exposures. Furthermore, it is possible for us
to compare micro- and nanoplastics to man-made nanoparticles. Recently,
Mitrano et al. (2021) argued that nanoplastics could not be attributed to
man-made nanoparticles given their physical behaviors. The predicated
amounts of nanoplastics could be much greater than nanoparticles in the
environments (Garvey et al., 2020; Lehner et al., 2019). The physico-
chemical changes of plastics are also indirectly changing the transportation
pathways by linking between biotic and abiotic compartments. Field obser-
vation and labwork have proved that biofilms tended to form on theweath-
ered surfaces which have increased surface areas (ter Halle et al., 2017; Wu
et al., 2019). Biofilm formation would increase the relative density of par-
ticles, promoting their sedimentation. A field evidence of marine debris
usage by the ghost crab provided new sights into the interactions between
bio-disturbance and weathered plastics (Costa et al., 2018). However, the
influences of organisms on plastic physicochemical features still need
more field investigations.

8. Conclusion and outlook

In brief, our reviewhas summarized several major pathways involved in
the transportation of plastics and microplastics in a global scale. Natural
forces including hydrological, meteorological, oceanic and even biological
factors influence the plastic cycle and flow directions within the Earth's
Four Spheres. Anthropogenic activities affect all sections of plastic transpor-
tation in terms of sources emission to the continuous turbulence of sinks. In
order to identify the key pathways related to large-scale and long-term
transportation, more efforts should be paid to measure the changes of plas-
tic features during the transportation. Based on a historical perspective and
global scale, the role of waste generation and degradation should also be in-
corporated into the fieldmeasurements. Before we can detail the geological
cycle of plastic, a full description of the pathways regarding plastics trans-
portation remain unknown to the question on how humans participated
in a “Plastic Age”.



Fig. 6. A conceptual model for plastics and microplastics transportation. The possible pathways are labeled with numbers.
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