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Remote sensing-based retrieval of the concentrations of water components relies largely on the accuracy of the
atmospheric correction. Although a variety of atmospheric correction algorithms have been developed for turbid
waters, the water-leaving reflectance is still underestimated in extremely turbid waters, such as in the
Changjiang (Yangtze) estuary and the adjacent coast. To address this issue, this paper proposes an improved al-
gorithm that is based on a spectral optimization algorithm (ESOA)with a coupledwater-atmospheremodel. The
model combines an aerosol model that is constructed from Aerosol Robotic Network (AERONET) observation
data and a simple semi-empirical radiative transfer (SERT)model (Shen et al. 2010) forwater component retriev-
al. Four unknown parameters are involved in the coupled model: the relative humidity (RH), fine-mode fraction
(FMF), aerosol optical thickness in the near-infrared (NIR) wavelength τa(λ0) and suspended particulate matter
(SPM) concentration (Cspm). These parameters are estimated by a global optimization approach that is based on a
genetic algorithm (GA) without any initial inputs. Validation results of the atmospherically corrected remote
sensing reflectance Rrs(λ) from matchups between Geostationary Ocean Color Imager (GOCI) data and in situ
data show that the algorithmhas satisfactory accuracy. The rootmean square error (RMSE) and the absolute per-
centage difference (APD) are 0.0089 and 35.12, respectively. By contrast, the Rrs(λ) values retrieved from the
same matchups using the GOCI data processing system (GDPS) have higher RMSE and APD of 0.0104 and
69.15, respectively. The ESOAmethod can be implemented conveniently within the open source code of SeaDAS
(v7.1) as an alternative and operational tool for atmospheric correction of ocean color data, including GOCI,
MERIS and MODIS, over highly turbid estuarine and coastal regions, such as the Yangtze estuary, the Hangzhou
Bay and most of the coastal ocean in Eastern China.
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1. Introduction

Approximately 90% of the radiant signals received by ocean color re-
mote sensors is contributed by atmospheric components that are unre-
lated to the water components. Therefore, the accuracy of atmospheric
correction critically affects the accuracy of ocean color parameter re-
trievals. In recent decades, due to the efforts ofmany researchers, the at-
mospheric correction for Case-1 waters has been well established.
However, the atmospheric correction for turbid coastal waters is still
unsatisfactory. The difficulty in atmospheric correction is how to deter-
mine the types andoptical thicknesses (τa) of aerosols based on remote-
sensing images. A classical atmospheric correction algorithm (GW94;
Gordon and Wang, 1994) that is based on the near-infrared (NIR)
“dark pixel” assumption infers the ratio (ε) of the aerosol scattering

reflectances ρa at twoNIRbands ρa (NIR). The algorithmneglects the ab-
sorption of heavily absorbing aerosols, selects the best aerosol model
from 12 candidate aerosol models (M50, M70, M90, M99, C50, C70,
C90, C99, T50, T80, T99, and O99) based on ε and then extrapolates ρa
(NIR)to the visible spectrum (VIS). In the implementation of GW94 in
the Sea-viewing Wide Field-of-View Sensor Data Analysis System
(SeaDAS) (v7.1), the 12 candidate aerosol models are replaced with
the AERONET-based aerosol model (Ahmad et al., 2010), which works
well for Case-1 waters but suffers from two problems when applied to
turbidwaters. First, the assumption of anNIR “dark pixel” is invalid. Sec-
ond, the absorption by heavily absorbing aerosols cannot be ignored be-
cause most turbid waters are located in estuaries and coastal regions.
Due to the influence of continental contaminant emissions (e.g.,
smoke), aerosols over these regions are often absorbing. Numerous re-
searchers have attempted to address these two problems.

For example, using iterative schemes, Siegel et al. (2000) and Bailey
et al. (2010) estimated chlorophyll-a (Chla) concentrations by
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establishing a semi-analytical model of the water-leaving radiance Lw
and the Chla concentration. Shi et al. (2012) derived the diffuse attenu-
ation coefficient at 490 nm (Kd_490) by developing an empirical rela-
tionship between Lw and the water diffuse attenuation coefficient Kd,
deriving Lw in the NIR using a bio-optical model, and gradually decreas-
ing Lw in the NIR using an iterative scheme. Atmospheric correction al-
gorithms that are based on iterative schemes have improved the
accuracy of atmospheric correction for turbidwaters. However, these it-
erative schemes are fundamentally based on the NIR “dark pixel” as-
sumption, which overestimates ρa(λ) at the beginning of the iteration,
which will likely result in negative Lw values in the blue region. To ad-
dress the issue that the Lw values of turbid waters for short-wavelength
infrared (SWIR) spectra are close to 0, Wang and Shi (2005) andWang
et al., 2009 proposed the assumption of a SWIR “dark pixel” for MODIS
atmospheric correction. This method has been validated over western
Pacific turbid waters. However, most current ocean color remote sen-
sors, such as the Sea-viewing Wide Field-of-View Sensor (SeaWiFS),
Medium Resolution Imaging Spectrometer (MERIS) and Geostationary
Ocean Color Imager (GOCI), do not include SWIR bands, which limits
the application of this method. He et al. (2012) proposed an atmospher-
ic correction algorithm based on the assumption of an ultraviolet (UV)
“dark pixel” (UV-AC)·The UV-AC algorithm produces good corrections
for turbid waters, but the UV “dark pixel” assumption is still invalid
for highly turbidwaters (He et al., 2012; Knaeps et al., 2012). In addition
to the “dark pixel” assumption, Ruddick et al. (2000) proposed an atmo-
spheric correction algorithm that assumes that the ratios between
(ρa(765)/ρa(865), ρw(765)/ρw(865)) are homogenous over a study
area. Due to the large temporal and spatial variabilities of turbid estuar-
ies and coastal regions (for example, the Yangtze estuary and Hangzhou
Bay), the assumption of a homogenous ρw ratio is always invalid.Mao et
al. (2013, 2014) suggested that using ε between two infrared bands to
extrapolate ρa (VIS) would amplify the errors. Thus, they proposed a
new method to determine the aerosol type by matching measured
Rrs(λ) data with aerosol models. This method requires a large amount
of measurements to build a remote-sensing reflectance database. On
the one hand, if the volume of measured data is not sufficient, it is diffi-
cult to fully represent all of the water's spectral characteristics; on the
other hand, if the volume of measured data is too large, it will take a
long time to perform searches, which reduces the practicality of the
algorithm.

The atmospheric correction algorithms described above are all based
on the 12 classical types of aerosolmodels, which use ε to determine the
aerosol types and extrapolate ρa (VIS). This method is highly reliable for
non-absorbing or weakly absorbing aerosol models but causes large er-
rors when considering the absorption of heavy-absorbing aerosols
(Gordon et al., 1997). Gordon et al. (1997) proposed an atmospheric
correction algorithm based on spectral matching (SMA), and Chomko
and Gordon (1998) proposed an atmospheric correction algorithm
based on spectral optimization (SOA). These two algorithms build a
coupled water-atmosphere model that simultaneously establishes
ρw(λ) and the aerosol type. By finding the optimal combination of the
water spectral reflectance and aerosol reflectance, these methods si-
multaneously derive the water's bio-optical and aerosolmodel parame-
ters. The difference between the methods is that the former searches
the discrete aerosol models one-by-one, whereas the latter uses the tra-
ditional nonlinear optimizationmethod. The SOAmodel assumes that a
simple single-parameter model represents the particle size distribution
of the aerosol, uses a series of complex refractive indices to represent
the aerosol absorptivity within a certain range and then calculates the
aerosol optical properties using Mie scattering theory. This method
also selects a semi-analytical bio-optical model based on the Chla con-
centration Cphy and the particle scattering coefficient b0 as the water-
leaving radiance model. This coupled model includes six parameters
(mr, mi, ν, τ, Cphy, and b0) to be optimized. With the NIR “dark pixel” as-
sumption, these are reduced to four parameters (ν, τ, Cphy, and b0). Last-
ly, it uses a constrained nonlinear optimization method to

simultaneously retrieve the four parameters. Chomko and Gordon
(1998) applied the SOA algorithm to the atmospheric correction of
SeaWiFS imagery over open ocean waters and validated the retrieved
aerosol parameters and water bio-optical parameters. Chomko et al.
(2003) improved the SOA algorithm by combining it with a globally
tuned version of the Garver and Siegel (1997) bio-optical model
(GSM01) and conducting an initial estimation of parameters using the
NIR “dark pixel” assumption. Because the NIR “dark pixel” assumption
is invalid for Case-2 waters, Kuchinke et al. (2009) used an iterative
method to make an initial estimation of the parameters based on the
NIR “dark pixel” assumption and proposed an improved SOA algorithm
(SOA2009) so it could be applied to the atmospheric correction for Case-
2 waters. Comparisons between the correction and modeling results
and measurements in Chesapeake Bay showed that the algorithm per-
formed very well.

Although SOA2009 provides a good model for atmospheric correc-
tion over turbid waters, its application in regional waters with complex
optical properties, such as the Yangtze estuary and the adjacent coast, is
limited for several reasons. (1) The particle size distribution of the aero-
sol model in SOA2009, which is based on a Junge power law (see
Chomko and Gordon (1998) and Kuchinke et al. (2009) for a descrip-
tion), cannot explain the appearance of large particles in the observed
particle size distribution (Davies, 1974), especially in coastal regions.
(2) The GSM01-based SOA2009 relies on the chlorophyll-specific ab-
sorption spectra aph

∗ , the colored dissolved organic matter (CDOM)
spectral slope S and the particle backscattering spectra n, which vary
strongly in waters with regionally complex optical properties. In addi-
tion, in highly turbid waters, Lw is mainly determined by the backscat-
tering of suspended particulate matter (SPM). The GSM01 model,
which synthesizes the effects of Chla, CDOMand total suspendedmatter
(TSM), is too complicated. (3) SOA2009 uses a traditional constrained
nonlinear optimization algorithm, such as the quasi-Newton algorithm,
that strongly relies on parameter initialization and can only find an op-
timum near the initial values. However, it is difficult to accurately esti-
mate the initial values of the parameters.

This study proposes an improved SOA atmospheric correction algo-
rithm for turbid waters (ESOA). To address the three limitations de-
scribed above, we made the following improvements: (1) In ESOA, the
aerosol model is based on the AERONET observation data; thus, it can
accurately reflect the actual conditions of the coastal aerosols (Ahmad
et al., 2010). Additional details about this model are given in Section
2.1. (2) ESOA replaces the GSM01 model with a simple semi-empirical
radiative transfer (SERT) model that has fewer parameters and works
well with turbid coastal waters (Section 2.2). By combining (1) and
(2), we derive a set of nonlinear equations based on radiative transfer
(Section 3). (3) ESOA replaces the traditional optimization methods
with a global-optimization genetic algorithm that does not rely on pa-
rameter initialization (Section 3). In Section 4, we validate ESOA with
the simulated data and measurements separately. The measurements
that are used for the validation include measured Rrs(λ) data, fixed sta-
tion SPM datasets and GOCI images over the Yangtze estuary and the
adjacent coast. Finally, this study discusses the operational satellite
image processing approach based on ESOA.

2. Aerosol and water models

In this study, we replace the top of atmosphere (TOA) radiance L
with the planetary reflectance, which is defined as:

ρ ¼ πL
F0 cosθ0

; ð1Þ

where F0 is the extraterrestrial solar irradiance, and θ0 is the solar zenith
angle. Thus, the TOA reflectance of the ocean-atmosphere system at
wavelength λ is ρt(λ), and ρm(λ) is the calibrated ρt(λ) with Rayleigh
scattering ρr(λ) correction, white cap reflectance ρwc(λ) and flare
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reflection ρg(λ) using the SeaDAS (v7.1 http://seadas.gsfc.nasa.gov/)
standard algorithm (Eq. (2)),

ρm λð Þ ¼ ρt λð Þ−ρr λð Þ−t λð Þρwc λð Þ−T λð Þρg λð Þ
h i

; ð2Þ

where t(λ) and T(λ) are the diffuse and direct transmittances in the sea
surface-to-sensor direction, respectively. In the SeaDAS standard algo-
rithm, the calculation of ρr(λ) is based on the model proposed by
Gordon et al. (1988), ρwc(λ) is estimated using an improved model in
which information on wind-wave conditions were taken into account
(Stramska and Petelski, 2003), and ρg(λ) is estimated using an azimuth-
ally symmetric form of Cox-Munk model (Wang and Bailey, 2001). The
sum of ρa(λ) and ρw(λ)t(λ) is represented as:

ρaw λð Þ ¼ ρa λð Þ þ ρw λð Þt λð Þ: ð3Þ

The terms on the right-handside of Eq. (3) depend on the specific
aerosol and water models. In theory, ρm(λ) is equal to ρaw(λ) at all
wavelengths. Thus, the optimization algorithm is used to estimate the
unknown parameters. The following section fully describes the aerosol
model, the water model and their parameters that were used in this
study.

2.1. The aerosol model

Because aerosol models with power-law particle-size distributions
cannot accurately explain the appearance of large particles in observed
particle-size distributions, Davies proposed a lognormal function for
aerosol particle-size distributions (Davies, 1974). Shettle and Fenn
(1979) classified the sources of aerosols. Based on tropospheric and
maritime type aerosols, Gordon and Wang (1994) proposed a series of
aerosol models for the atmospheric correction of remote-sensing imag-
ery. However, thesemodels cannot be used for smoke and dust over the
ocean (Ahmad et al., 2010). Ahmad et al. (2010) analyzed approximate-
ly ten years of data from eight AERONET stations (three coastal stations
and fivemarine stations) and discovered that the seasonal variability in
the aerosol radiuswas correlated to the relative humidity. Based on that
finding, he developed an aerosol model for the inversion of remotely
sensed atmospheric optical properties (referred to as Ahmad2010).
Ahmad2010 includes eight coarse-mode particles that are represented
by RH (30%, 50%, 70%, 75%, 80%, 85%, 90%, and 95%). Every coarse
mode is composed of 10 fine-mode (0, 0.01, 0.02, 0.05, 0.1, 0.2, 0.3,
0.5, 0.8, and 0.95) particles that are represented by fine-mode fractions
(FMFs). A total of 80 types of aerosolswere created. Ahmad et al. (2010)
assumes that the coarse-mode particles represent non-absorbing aero-
sols such as sea salt; thus, the absorption observed by AERONET is en-
tirely due to fine-mode particles. Ahmad used Ahmad2010 to replace
the 12 classic types of aerosol models for atmospheric correction, and
the derived τa and Lw values were more accurate. Thus, ESOA uses
Ahmad2010 as the aerosol model. The look-up tables (LUTs) are includ-
ed in SeaDAS. Each LUT includes optical parameters, such as the aerosol
extinction coefficient c(λ), single scattering albedo ω0(λ),phase func-
tion P(θ, θ0, λ), Ångström coefficient, quadratic coefficients of the sin-
gle-scattering to multi-scattering function, coefficients of diffuse
sensor transmittance, and coefficients of diffuse solar transmittance. In
the SeaDAS standard algorithm for the LUTs, aerosol optical properties
such as ρa(λ), t(λ) and τa(λ) are calculated for a given τa(λ0). The de-
tailed calculation process is found in the atmospheric correctionmodule
in SeaDAS which is open source (https://oceancolor.gsfc.nasa.gov/
ocssw), and also is described by Mobley et al. (2016). Because these
are limited to the 80 LUT entries for the Ahamd2000 aerosol model
that are represented by eight RH values and ten FMF values, bilinear in-
terpolation is used to calculate τa(λ), ρa(λ) and t(λ)for aerosol types
that are represented by arbitrary values of RH and FMF. Fig. 1(a)
shows the aerosol reflectance ρa(λ), and Fig. 1(b) shows the diffuse

transmittance t(λ) in different aerosol models for an RH of 70% and a
solar zenith angle, sensor zenith angle, relative angle, and τa(865) of
30°, 15°, 120°, and 0.1, respectively, where λ is the central wavelength
of each GOCI band.

2.2. The semi-empirical radiative transfer (SERT) model

The remote-sensing reflectance is related to the inherent optical
properties (IOPs) of the water body via the underwater reflectance (r).
Kubelka and Munk (KM) (1931) proposed a calculation model for r
from a semi-infinite turbidmedium based on a two-stream approxima-
tion in the radiative transfer:

r ¼ bb=a

bb=aþ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2bb=a

p : ð4Þ

Eq. (4) shows that r is only a function of the ratio x= bb/a. For highly
turbidwaters, Shen et al. (2010a,b) assumed that xwas positively corre-
lated with the SPM concentration and proposed a SERT model based on
that assumption:

Rrs λð Þ ¼ α λð Þβ λð ÞCspm

1þ β λð ÞCspm þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2β λð ÞCspm

p ; ð5Þ

where α and β are model coefficients that are wavelength-dependent,
and Cspm is the SPM concentration. For waters in which the SPM is the
dominant variable, one may assume that x is a function of Cspm as fol-
lows:

x ¼ bbO þ CspmbbS
aO þ CspmaS

; ð6Þ

where the subscript S refers to suspended sediment, and O stands for all
of the other constituents of the water, including the pure water itself.
Neglecting the absorption of SPM and the backscatter of the other
water constituents, x becomes proportional to Cspm(x = βCspm). The
other constituents are the pure water itself and the (assumed constant)
amounts of CDOM and Chla. To compensate Rrs for the influence of the
absorption of SPM, another parameter α is introduced in the SERT
model. The values ofα andβ in the SERTmodel at differentwavelengths
were fitted frommeasured Rrs and SPM concentrations. This means that
the amounts of CDOM and Chla are assumed to be constant in the SERT
model, so the influences of their variations are neglected.

Shen et al. (2013, 2014) estimated the SPM concentrations in the
Yangtze estuary and the adjacent coast through the application of the
SERT model to numerous types of ocean color sensors (e.g., GOCI,
MERIS andMODIS) and analyzed the long-term time series of SPM con-
centrations. After comparison and validation with multiple measure-
ments, they found that the SPM concentrations derived from three
sensors with nearly synchronous overpasses (MERIS, MODIS, and FY-3
MERSI) exhibited excellent consistency, with mean differences of
0.056, 0.057, and 0.013 g l−1, respectively, at three field fixed stations
in the Yangtze estuary. By combining Eq. (5), the definition of ρw =
Lw / F0cos(θ0) in this study (based on Eq. (1)) and Rrs = Lw / Ed(0+),
where Ed(0+) refers to the downwelling irradiance just above the sur-
face which is approximately equal to F0cos(θ0)t0, one can derive the fol-
lowing equation:

ρw λð Þ ¼ α λð Þβ λð ÞCspm

1þ β λð ÞCspm þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2β λð ÞCspm

p π t0 λð Þ; ð7Þ

where t0(λ) is the diffuse transmittance in the sun-to-sea direction.
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3. Implementation of ESOA based on a genetic algorithm

In Section 2, we described the basic process of radiative transfer, the
Ahmad2010 aerosol model and the SERT water model. Assuming that
the four unknown parameters (RH, FMF, τa(λ0) and Cspm) in the
water-atmosphere model are known, then ρa(λ), t0(λ), t(λ)and ρw(λ)
can be estimated from these four parameters, which are denoted as
ρa(λ, RH, FMF, τa(λ0)), t0(λ, RH, FMF, τa(λ0)), t(λ, RH, FMF, τa(λ0))
and ρw(λ, RH, FMF, τa(λ0), Cspm), respectively. Thus,ρaw(λ,RH,FMF,-
τa(λ0),Cspm)can be obtained by Eq. (8):

ρaw λ;RH; FMF; τa λ0ð Þ;Cspm
� � ¼ ρa λ;RH; FMF; τa λ0ð Þð Þ
þρw λ;RH; FMF; τa λ0ð Þ;Cspm

� �
t λ;RH; FMF; τa λ0ð Þð Þ:

ð8Þ

By combining Eq. (2), Eq. (3) and the water-atmosphere model de-
scribed above, one can build the following set of nonlinear equations
for sensors with the waveband number N for the visible and near-infra-
red wavelengths:

ρm λ1ð Þ ¼ ρaw λ1;RH; FMF; τa λ0ð Þ;Cspm
� �

;
ρm λ2ð Þ ¼ ρaw λ2;RH; FMF; τa λ0ð Þ;Cspm

� �
;

ρm λNð Þ ¼ ρaw λN;RH; FMF; τa λ0ð Þ;Cspm
� �

:
ð9Þ

SOA2009 and its prior SOA algorithms use traditional constrained
nonlinear optimization algorithms, such as Broyden Fletcher Garbo
Shannon (BFGS) (Byrd et al., 1995), for parameter optimization. How-
ever, this type of nonlinear optimization algorithm relies on variable ini-
tialization. They can only find the local optimum within the solution
space set by the initial values but cannot find the global optimum. It is
difficult to accurately estimate the initial values of the four unknownpa-
rameters for the nonlinear problem in Eq. (9). Thus, traditional nonlin-
ear optimization algorithms are not applicable to this nonlinear
problem ifan accurate first estimate is not available. Genetic algorithms
(GAs) are a type of global optimization algorithm that do not rely on dif-
ferential and initial values of the variables. Thus, a GA is introduced to
perform the optimization of Eq. (9). The genetic algorithm modeling
for a specific problem generally needs to identify three important as-
pects: the ranges and encodings of the variables, the objective function
(or fitness function) and the genetic operators and their related param-
eters. The details of the GA implementation for the specific nonlinear
problem in this study are described in the Appendix.

4. Validation

We described the aerosol model and water model of ESOA and the
genetic algorithm for spectral optimization in detail in the previous sec-
tions. To validate the performance of the algorithm, we established a
simulated dataset and validated the algorithm via the optimization of
the simulated data. We then established matchup datasets for in situ
measurements and remote-sensing imagery. We validated the algo-
rithm via a comparison between the in situ measurements and the re-
trieved results for the matchups. Due to limitations in weather
conditions and the measurement cruises, few matchup pairs of
Rrs(λ)were available. Therefore, we also compared the SPM derived by
the ESOA algorithm with the in situ SPM measurements.

4.1. Validation with simulated data

To validate the ESOA algorithm and determine its performance,
ESOAwas first tested with synthetic data that contained different levels
of noise (0, 2%, and 5%). A similar method to construct simulated
datasets was used by Maritorena et al. (2002). We created synthetic
datasets using the aerosol and water models described above in a for-
ward model with different values of the four parameters (RH, FMF,
τa(865) and Cspm), which were randomly generated with ranges of
[30,95], [0,100], [0.01,0.5] and [20,1000], respectively (see details of
the ranges in theAppendix). The values of the observation geometry pa-
rameters (solar zenith angle θ0, viewing zenith angle θ and relative azi-
muth angle φ) were also generated randomly with ranges of [0,60],
[0,60] and [−180,180], respectively. We simulated 1000 samples of
the ρm(λ) spectrum with these random values using Eq. (8).

Two additional synthetic datasets with added noise were created.
Random noise was added to the ρm(λ) spectra by multiplying the orig-
inal signal by a signal that consisted of spectrally uncorrelated normally
distributed random deviations with a mean of 1.0 and a standard devi-
ation of 0.02 or 0.05 (referred to as the 2% and 5% noise datasets, respec-
tively). Whether this scheme reproduces realistic situations does not
actually matter because these data are designed to assess ESOA and
how it accommodates noisy data.

Fig. 1.Aerosol reflectance ρa(λ) (a) and diffuse transmittance from the sea surface to the sensor t(λ) (b) calculated by the aerosol model developed by Ahmad for different FMFs (upper to
lower curves) for RH = 70%, solar zenith angle θ0 = 15°, sensor zenith angle θ = 30°, relative azimuth angle φ = 120° and τa(865) = 0.1.

Table 1
Two parameters of the SERT model at the GOCI bands.

Waveband (nm) 412 443 490 555 660 680 745

α 0.0201 0.0253 0.0311 0.0488 0.0771 0.0797 0.0954
β 49.6982 48.3820 47.510 33.713 11.016 10.2475 2.9698
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Fig. 2. Retrieved SPM, τa(865), RH, FMF and Rrs(λ) values(from upper to lower) versus the actual values in synthetic datasets with no noise (left panels), 2% noise (middle panels), and 5%
noise (right panels).
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The ESOA algorithm was first tested with the three synthetic
datasets. All of the tests were conducted with the first seven GOCI
bands. Table 1 shows the values of α and β in the SERT model for the
GOCI bands. Because the longest wavelength of the Rrs measurements
used to fit the model coefficients α and β was 858 nm, there are no
values of α and β at 865 nm.

After optimizing the four variables, theRrs(λ) spectrumwas estimat-
ed using the inverse model (Eq. (10)):

Rrs λð Þ ¼
ρm λð Þ−ρa λ;RH0; FMF0; τa 865ð Þ0

� �
t0 λ;RH0; FMF0; τa 865ð Þ0
� �

t λ;RH0; FMF0; τa 865ð Þ0
� �

π
; ð10Þ

where RH0, FMF0 and τa(865)0 refer to the RH, FMF and τa(865) values
retrieved by ESOA, respectively.

For the dataset with no added noise, the retrieved variables are sim-
ilar to the initial values. The RMSEs and correlation coefficients R2 for
the five variables are 22.57 and 0.997 (Cspm), 0.02 and 0.991
(τa(865)), 10.46 and 0.841 (RH), 7.64 and 0.959 (FMF) and 6.34e-4
and 0.99 (Rrs(λ)), respectively. These excellent agreements demon-
strate that the approach can optimize the four unknowns in the com-
plex, nonlinear system well. For datasets with random noise, the
optimization errors for RHand FMF increase significantly and are almost
entirely off the 1:1 line (Fig. 2). The main reason for the inconsistent

results for RH and FMF is that the set of nonlinear equations (Eq. (9))
has more than one optimum solution for the two parameters. This sug-
gests that different combinations of RH and FMFmay generate very sim-
ilar ρa(λ) spectra(Fig.3). For the dataset without added noise, the RMSE
and R2 values between the simulated and retrieved ρa(λ) values are
5.59E-4 and 1.00, respectively. For the datasets with 2% and 5% noise
added, the RMSE and R2 values are 4.41E-3 and 0.999 and 2.38E-3 and
0.980, respectively. The retrieval errors for Cspm, τa(865) and Rrs(λ)
also increase with the amount of noise, but the results generally agree
well with the measurements (Fig. 2).The modeled Cspm and Rrs(λ)
values were retrieved with high fidelity throughout the range of con-
centrations evenwith 5% noise. This demonstrates that ESOA can deter-
mine reasonably successful parameter candidates for Cspm, τa(865) and
Rrs(λ)even in the presence of significant noise. RH and FMF cannot be
retrieved accurately by the proposed algorithm; however, this does
not have a significant influence on the Rrs(λ) retrieval.

To further evaluate the performance of the GA for this set of nonlin-
ear equations (Eq. (9)), we also processed the synthetic datasets using
the Levenberg-Marquardt (LM) algorithm (Kanzow et al., 2005) with
random initial parameter values and compared the RMSEs of the pa-
rameters SPM, τa(865), Rrs(λ) and ρa(λ). Fig. 4 shows the RMSEs com-
puted for the four parameters when the LM and GA are used to
optimize the synthetic datasetswith 0, 2%, and 5% noise. The histograms
show that the GA performs better than the LM algorithm because,

Fig. 3. Retrieved ρa(λ) values versus actual values in the synthetic datasets with no noise (left), 2% noise (middle), and 5% noise (right).

Fig. 4.RMSEs computed for SPM, τa(865),Rrs(λ) and ρa(λ)when the Levenberg-Marquardt algorithm(LM) and the genetic algorithm (GA) are used to optimize the synthetic datasetswith
0, 2% and 5% noise.
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unlike LM, the GA does not depend on the parameter initialization. Be-
cause the first estimates for the parameters are random, the LM algo-
rithm cannot find the global optimum for the synthetic datasets
regardless of the amount of noise. The GA is more sensitive to noise
than the LM algorithm. For example, there is no significant difference
between the RMSEs computed by the LM algorithm with different
noise levels for Cspm, while the RMSE for the GA increased with increas-
ing amounts of noise. However, it is worth noting that the RMSE com-
puted with a specific amount of noise is lower for the GA than for the
LM algorithm; this is true for all of the parameters. The advantage of
the GA increases with decreasing amounts of noise.

To discuss the sensitivity of ESOA to the observation geometry, we
generated 15 groups of simulated datasets with five combinations of θ
and θ0 ((5, 5), (15, 15), (30, 30), (50, 50), and (70, 70)) and three values
of φ (30, 60, and 90). For each group, the parameters other than the ob-
servation geometry (Cspm, τa(865), RH and FMF) that were used to

generate the simulated datasets are the same. Each group contains
1000 samples. These simulated datasets were optimized with ESOA.
The results show that the observation geometry has a significant influ-
ence on the retrieval of Cspm, τa(865), RH, FMF and Rrs. Table 2 lists the
RMSEs of each parameter for each group of datasets. The RMSE for
Cspm has a significant variation from 2.43 to 59.14. For the same θ and
θ0 values, the lowest RMSE occurs when the relative azimuth φ is 90.
In addition, for the same relative azimuth φ, the lowest RMSE occurs
with solar and sensor zenith angles of 30 and 30, respectively. The pa-
rameter Rrs has a similar RMSE pattern as Cspm. However, there are no
obvious patterns in the RMSE values for τa(865), RH and FMF.

4.2. Validation with matchup datasets of Rrs(λ)

We verified the ESOA algorithmwith GOCI images and Rrs measure-
ments taken during May 2011, March 2012 and March 2013 over the
Yangtze River estuary and the adjacent seas. Radiometric measure-
ments were recorded by the Hyperspectral Surface Acquisition System
(Hyper SAS, Satlantic Inc., Canada) and include the sea-surface radiance
(Lt), sky radiance (Li) and solar irradiance (Es) from 350 to 900 nm in
136 spectral channels. Details of the sensor mounting and observation
geometries can be found in Shen et al. (2014). The values of Rrswere cal-
culated by (Hooker et al., 2002; Mobley, 1999):

Rrs ¼ Lt−ρLi
Es

; ð11Þ

where ρ is the sea surface reflectance factor, which is correlatedwith
the solar zenith angle and surface roughness. Additional details about
the Rrs calculation can be found in Sokoletsky and Shen (2014). In addi-
tion, the ESOA atmospheric correction targets coastal turbid waters.
Therefore, we only selected stationswith Cspm values N20 (gm−3) (Sec-
tion 3.1) for comparison and validation. As a result, we selected a total of
nine stations, the locations of which are shown in Fig. 5. We optimized
four parameters and estimated Rrs(λ) by applying the ESOA algorithm
to the individual pixels of the GOCI images that corresponded to the lat-
itudes and longitudes of the stations. The measurement time difference

Table 2
RMSE values of Cspm, τa(865), RH, FMF and Rrs for synthetic datasets with different obser-
vation geometries (θ, θ0 and φ) without random noise.

θ, θ0, φ RMSE

Cspm τa(865) RH FMF Rrs

5, 5, 30 22.76 0.03 7.29 14.45 0.000406
5, 5, 90 18.52 0.01 5.67 6 0.000301
5, 5, 150 23.73 0.02 4.7 6.38 0.000408
15, 15, 30 6.6 0.01 4.8 2.06 0.000101
15, 15, 90 5.48 0.03 10.98 7.42 8.19E-05
15, 15, 150 10.32 0.02 5.49 2.74 0.000153
30, 30, 30 6.86 0.01 3.16 1.66 9.22E-05
30, 30, 90 2.43 0.01 3.63 2.15 4.61E-05
30, 30, 150 8.74 0.03 6 6.72 0.000109
50, 50, 30 25.67 0.01 7.44 2.76 0.000349
50, 50, 90 5.67 0.03 14.97 6.99 8.76E-05
50, 50, 150 9.03 0.04 10.85 7.7 0.000167
70, 70, 30 59.14 0.01 3.11 1.59 0.000942
70, 70, 90 48.54 0.02 9.6 7.84 0.000616
70, 70, 150 11.09 0.01 4.95 5 0.000179

Fig. 5. Locations ofmatchup datasets collected from cruise stations (triangles) and fixed field stations (stars). Red, purple and green triangles refer to cruises inMay 2011,March 2012 and
March 2013, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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is b3 h. We evaluated the bias using the RMSE and APD, which are cal-
culated using:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑M

j¼1 ∑
N
i¼1 Rrs λið Þinsitu−Rrs λið Þretrieved
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j
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; ð12Þ

APD ¼ 100
1

MN
∑
M

j¼1
∑
N

i¼1

jRrs λið Þinsitu−Rrs λið Þretrievedj
Rrs λið Þinsitu

" #
j

; ð13Þ

where i and j denote the ithwaveband at the jth station, andMandNare
the number of stations and the number of bands, respectively. Fig. 6
shows that the estimated andmeasured Rrs(λ) valueswere very consis-
tent and plot close to the 1:1 line. The RMSE and APD were 0.0082 and
36.69, respectively.

4.3. Validation with matchup datasets of SPM

The ESOA algorithm optimizes the four parameters simultaneously.
Because it was impossible to find matching measurements for RH,
FMF and τa(865), we only performed the comparison validation for
Cspm. We used the matching datasets from the same cruises as in
Section 4.2 to validate the SPM. The SPM concentrations were deter-
mined gravimetrically in the laboratory. Water samples were filtered
by 0.7 μmWhatman GF/F glass fiber filters. The blank and sample-filled
filters were rinsed with Milli-Q water to remove salts, dried, and then
reweighed on a high-precision balance in the laboratory (Shen et al.,
2014). As shown in Fig. 7, the in situ measured and retrieved SPM con-
centrations plot close to the 1:1 line. The definitions for the RMSE and
APD are similar to those discussed in Section 4.2, and their values
were 51.7and 29, respectively.

In addition to the SPM datasets from the cruises, we collected SPM
datasets from fixed field stations where the water turbidity is automat-
ically recorded using D&A Tech optical backscatter instruments (OBSs).
Autonomous measurements of OBS turbidity at fixed field stations may
increase the opportunity to validate satellite retrieval products. The full-
year 2013 datasets from three stations, Changxingdao, Nanmen, and
Baozhen, were used for concurrent verification between GOCI and in
situ measurements. The locations of the three stations are shown in
Fig. 5. GOCI collects one image every other hour between 0 and 8
(UTC) on a daily basis. It takes approximately 30 min for each image
scene to scan the Earth's surface. To match the timing of the station
data with the GOCI images, we selected the average of the measure-
ments during the scan time of each image as the station measurement.
For example, the first GOCI image was acquired from approximately
00:16 (UTC) to 00:45 (UTC). Therefore, we selected the average of the
measured station data between 00:16 (UTC) and 00:45 (UTC) as the
image matching measurement. Commonly, the OBS directly measures
turbidity in units of NTU (defined as x). To obtain the SPM concentration
(defined as y in units of g l−1), we needed to calibrate their relationship.
Xue et al. (2004) calibrated theOBS at the Yangtze River estuary and ob-
tained the relationship y = 0.0017x + 0.0202. Zhao et al. (2015) per-
formed a calibration for the Chongxi station and found that the
relationship between y and x varied between the wet season

Fig. 7. Comparison between in situmeasured and retrievedCspm values (gm−3). The 1:1 reference line, rootmean square error (RMSE), and absolute percentagedifference (APD)between
the retrieved and in situ measured Cspm (g m−3) values are shown.

Fig. 6. Comparison betweenmeasured and retrieved Rrs(λ) values for all GOCIwavebands
(except for 865 nm). The 1:1 reference line, root mean square error (RMSE), and absolute
percentage difference (APD) between the retrieved and measured Rrs(λ) values are
shown.
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(September and October; y= 0.0021x) and the dry season (March and
April; y=0.0013x). This study used the averages of the SPM concentra-
tions derived from the relationships reported by Xue et al. (2004) and
Zhao et al. (2015) as the station SPM concentrations. Using the method
presented above, we processed the full-year datasets from the
Changxingdao, Nanmen and Baozhen stations that matched the GOCI
images. For comparison with the station Cspm, we converted the units
of Cspm fromgm−3 to g l−1. From the time series of thematching results
(Fig. 8), the retrieved Cspm values for the three stations reasonably cor-
relatedwith the SPMvariationmeasured by theOBS. Specifically, for the
Changxingdao station, the two values were similar after April 2, but
therewere large differences for unknown reasons before that. Themea-
sured SPM from the Baozhen station was higher than that retrieved
from the GOCI data. The largest difference occurred on October 12–19.
The GOCI SPM of the Nanmen station deviated considerably from the

measured SPM before April 2. The measured data did not vary after Oc-
tober 29 and September 9 at the Baozhen and Nanmen stations, respec-
tively. This may indicate that the instrument malfunctioned during that
time. In general, the OBS turbidity cannot always reliably replace the
SPM concentration because the SPM concentration (dry-mass weight
per volume) is only proportional to the OBS turbidity (NTU), but the
gain factor might vary; it depends on the calibrated relationship be-
tween the OBS turbidity and the corresponding SPM concentration,
which is not always stable and can be impacted by the particle size,
shape and composition, aggregation/flocculation, bubbles and chemical
and biological fouling. Unknown temporal variations in the particle size
or aggregation/flocculation and foulingwill nearly always result in inac-
curate OBS data (Downing, 2006). An effective way to develop the cali-
brated relationship would be to conduct OBS measurements with
simultaneous water samples, which may reduce these physical and

Fig. 8. SynchronousGOCI-derived SPM (blue) obtainedusing the proposed ESOAalgorithmwith concurrentOBS SPMat threefixedfield stations (Changxingdao, Baozhen andNanmen) in
2013 (red). There are 202, 90 and 241 matchups for Changxingdao (a), Baozhen (b) and Nanmen (c), respectively. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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biochemical impacts. However, this is impractical for autonomous OBS
measurements due to their inaccessibility, remote operation and limit-
ed personnel. Additional reasons for the deviations may not be
completely neglected, such as the difference in footprint between the
spatial resolutions of the satellite observations and the in situ measure-
ments and the effect of neighboring land in narrow channels of the
estuary.

5. Results and discussion

5.1. The operational satellite image processing approach

The ESOA algorithm uses the Ahmad2010 model as the aerosol
model, which can somewhat solve the absorbing-aerosol problem for
coastal waters. It uses the SERT model as the water model, which

Fig. 9. Retrieved values of SPM, τa(865) and Rrs(λ) (from left to right) versus the actual values in the synthetic datasets with RH = 70, FMF = 20 and no deviation (upper panels), 5%
deviation (middle panels), and 20% deviation (lower panels).

Fig. 10. SPM, τa(865) and Rrs(λ) values (from left to right) retrievedby LMwithout the assumption of a homogenous aerosol type or the first estimate fromESOA versus the actual values in
the synthetic datasets, which are the same as those in the upper panels in Fig.9.
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simplifies the model for highly turbid waters and facilitates the optimi-
zation calculation, and it uses a genetic algorithm to optimize the non-
linear problem, which avoids the traditional local optima-searching
limitation. The validation with simulated and measured datasets
shows that the ESOA algorithmhas satisfactory accuracy for atmospher-
ic corrections over turbidwaters. However, it takes a long time for ESOA
to optimize individual remote-sensing image pixels. The run time for a
computer with an Intel i7 processor and 16 GB of memory was approx-
imately 2 s. Thus, approximately 140 h were required to process a
500 × 500 pixel remote-sensing image, which is unacceptable. A partic-
ular technique is used to overcome this problem and apply the ESOA al-
gorithm to operational processing. We assume that the aerosol is
spatially homogeneous over the study area, and the satellite imagery
is then corrected in two steps:

1) Select a cloud-free pixel over the region and optimize the four pa-
rameters for that pixel with the ESOA algorithm. The optimization
results of the four parameters are denoted RH′, FMF′, Cspm′ and
τa(865)′, respectively.

2) Assume that the aerosol type is homogenous and that the values of
RH and FMF for each pixel are RH′ and FMF′, respectively. Thus,
each pixel has two remaining unknown parameters (Cspm and
τa(865)). A fast nonlinear optimization algorithm called LM is then

Fig. 11. Rrs(λ) values retrieved byGOCI using ESOA assuming a spatially homogeneous aerosol type distribution: (a) 412 nm; (b) 443nm; (c) 490 nm; (d) 555 nm; (e) 660 nm; (f) 680 nm;
(g) 745 nm; (h) 865 nm; (i) RGBpseudo color image using TOA reflectance at 660 nm(red), 555 nm(green), and 443 nm(blue). (For interpretation of the references to color in thisfigure
legend, the reader is referred to the web version of this article.)

Fig. 12. The τa(865) (m−1)values retrieved by GOCI using ESOA assuming a spatially
homogeneous aerosol type distribution. Cloudy pixels are masked in purple. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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used to optimize Cspm and τa(865) with the initial values Cspm′ and
τa(865)′, respectively. Finally, Rrs(λ) is estimated using Eq. (10).

To theoretically evaluate this technique, we simulated a group of
datasets with a specific combination of RH = 70 and FMF = 20 and a
randomly generated observation geometry, Cspm and τa(865). In addi-
tion, to evaluate the retrieval sensitivity to variations of RH and FMF,
two additional groups of datasets with different deviations of RH and
FMF (5% and 20%) were generated. These three groups of datasets
were processed using the technique described above.

For comparison, the synthetic datasets with no deviations of RH and
FMF are also optimized by LM directly without the assumption of a ho-
mogenous aerosol type or thefirst estimate fromESOAbut ratherwith a
random initialization. For the synthetic datasets with no deviations of
RH and FMF, the retrieved values of Cspm, τa(865) and Rrs are consistent.
As the deviation increases, the retrieval errors of Cspm, τa(865) and Rrs
increase but remain consistent (Fig. 9). The technique has significantly
lower retrieval errors than the LMoptimizationwithout the assumption
of a homogenous aerosol type or the first estimate from ESOA even for
the datasets with 20% deviations of RH and FMF (Fig. 10).

We employed themethod described above for the atmospheric cor-
rection of oneGOCI image (2011.05.07, 02:16 UTC) over the Yangtze es-
tuary and the adjacent coast. The target region includes 540×540 pixels
(including the continent), for which the processing time was 15 min.
Fig. 11(a)–(h) show images at each waveband after the correction.
The aerosol type of point P in Fig. 11(i) was used as the fixed aerosol
type for the entire target region. Fig. 12 shows the retrieved τa(865)
image.

To further validate this technique, we processed GOCI images over
the Yangtze estuary and the adjacent coast from the matchup datasets
in Sections 4.2 and 4.3 and estimated the Rrs(λ) values. The comparison
with the measurements showed that the derived Rrs(λ) values were
quite accurate with the assumption of a homogeneous aerosol. Al-
though the RMSE (~0.0089) was slightly higher than the RMSE without
this assumption (~0.0082; Fig. 6), the APD (35.12) was slightly lower.
Overall, there was no increase in the error (Fig. 13(a)). Fig. 13(b)
shows that the retrieved Rrs(λ) valueswith andwithout the assumption
of a homogeneous aerosol were well correlated with a correlation coef-
ficient r of up to 0.91.These results are generally consistent with those
from the simulated datasets. Therefore, we conclude that the assump-
tion of a homogeneous aerosol type over the Yangtze estuary and the
adjacent coast does not significantly affect the accuracy of the Rrs(λ)
retrieval.

5.2. Comparisonwith GDPS

In addition, to compare the atmospheric correction algorithm to the
official standard atmospheric correction algorithm of GOCI imagery, we
employed GDPS (v1.3, http://kosc.kiost.ac/kosc_web/?sub_num=23)
for the atmospheric correction of the GOCI images from the matchups
in Sections 4.2 and 4.3. The comparison between the GDPS v1.3-
corrected andmeasured Rrs(λ) values showed that the atmospheric cor-
rection algorithm that is based on ESOA and the assumption of a homo-
geneous aerosol was more accurate (Fig. 14) over the Yangtze estuary
and the adjacent coast. The RMSE and APD for the latter were 0.0089
and 35.12, respectively (Fig. 13(a)), whereas they were 0.0104 and
69.15 for the former, which are 17% and 97% greater, respectively.

5.3. Application to MERIS

The ESOA algorithm is applicable not only to GOCI images but also to
other ocean color sensors, such as MERIS. We applied the ESOA algo-
rithm with the assumption of a homogeneous aerosol to the 2011.5.7

Fig. 13. (a) Comparisonbetweenmeasured and retrieved Rrs(λ) values of all GOCIwavebands (except for 865 nm)using ESOAwith the assumption of a homogeneous aerosol type. The 1:1
reference line, root mean square error (RMSE), and absolute percentage difference (APD) between the retrieved and measured Rrs(λ) values are shown. (b) Comparison between the
Rrs(λ) values retrieved by ESOA and those retrieved by ESOA with the assumption of a homogeneous aerosol type. The correlation coefficients, r, are shown.

Fig. 14. Comparison betweenmeasured and retrieved Rrs(λ) values of all GOCIwavebands
(except for 865 nm) using GDPS (v1.3). The 1:1 reference line, root mean square error
(RMSE), and absolute percentage difference (APD) between the retrieved and measured
Rrs values are shown.
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02UTC MERIS image over the Yangtze estuary and the adjacent coast.
The neural-network (NN) atmospheric correction algorithm
(Schroeder et al., 2007) in BEAM (v4.11, http://www.brockmann-
consult.de/cms/web/beam/releases) was also used to process the
image. Fig. 15 shows the MERIS-derived Rrs(λ) images at a selection of
MERIS wavebands using the two atmospheric correction algorithms.
In the Yangtze estuary and the adjacent coast, the corrected Rrs(λ)
values using the NN algorithm were generally lower than those using
ESOA at all MERIS wavebands; this was most significant at 665 nm
and 681 nm (Fig. 15). We compared the corrected Rrs(λ) images at
the D3 station (location shown in Fig. 5) with the two algorithms and
with the in situ Rrs(λ) measurements. As shown in Fig. 16, the Rrs(λ)
values from the two algorithms were both underestimated at visible
wavelengths, but the values from the ESOA algorithm were closer to
the measured values. At 665 nm and 681 nm, the ESOA algorithm per-
formedmuch better than theNNalgorithm. Of course, the training sam-
ples used in the NN algorithm may have come from European coastal
regions, whichmay have caused the lower performance in the extreme-
ly turbid waters of the Yangtze estuary and the adjacent coast. The pur-
pose of the comparison is to show the performance of ESOA when it is
applied to MERIS images. Although ESOA with the assumption of a

homogeneous aerosol performed well in the Rrs(λ) retrieval over the
Yangtze estuary and the adjacent coast, this algorithm is more applica-
ble to small-scale regions. For large-scale regions, larger errors may
occur when using a uniform aerosol type to represent different aerosol
types over an entire region due to possible variations in the aerosol
types.

5.4. Sensitivity analysis

The potentiallyweak points of thismethod are related to the sources
of uncertainty in the approach and possible gaps thatmight still be pres-
ent. Therefore, we performed an additional sensitivity analysis, and the
results are presented in this section. To analyze the sensitivity of the re-
flectance spectra to variations in Chla concentration and CDOM,we sim-
ulated Rrs under two scenarios. In the first scenario, we assume that
acdom(440) is 5 m−1, the SPM concentration varies over 20, 200 and
500 gm−3, and Chla is ~[1, 3, 5, 7, 9]mgm−3. The Rrs spectra can be sim-
ulated by the two-stream Kubelka-Munk model (Eq. (4)) and several
other models, such as that in Lee et al. (1998). In the second scenario,
we assume that Chla is 5 mg m−3, the SPM concentration varies over
20, 200 and 500 g m−3, and acdom(440) is ~[0.1, 0.3, 0.5, 0.7, 0.9] m−1,

Fig. 15. Comparison of MERIS Rrs(λ) images at wavebands of 412, 443, 490, 560, 665, 754, and 779 nm on May 7, 2011. The results in the left panels are derived from the atmospheric
correction algorithm that is based on ESOA, and those in the right panels are derived from the atmospheric correction algorithm that is based on the NN. Station D3 is also shown (for
560 nm).
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and theRrs spectrawere simulated. The relative change rate (RCR) of Rrs,
which indicates the sensitivity to the variations of Chla (scenario 1) and
CDOM (scenario 2),was estimated for the two scenarios by:

RCR ¼ Ri
rs−R0

rs

R0
rs

100%; ð14Þ

where Rirs refers to the Rrs spectra with different values of Chla and
CDOM, and R0rs refers to the base Rrs with fixed Chla and CDOM. For
the two scenarios, Rrs with acdom(440) of 0.5 m−1and Chla of
5 mg m−3 is selected as the base R0rs.

Figs. 17 and 18 show that the high RCR values mainly occur at
shorter wavelengths (e.g., the blue bands). When the SPM concentra-
tion increases, the RCR decreases. This means that the Rrs spectra may

Fig. 15 (continued).
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not be sensitive to variations of the Chla and CDOM components when
the waters with high SPM become turbid, especially at longer wave-
lengths. Therefore, the SERT model, which is based on the assumption
that the concentrations of Chla and CDOM are constant, is a reasonable
approximation for highly turbid waters.

To analyze the impacts of Chla and CDOMvariations on the retrievals
of SPM, τa(865) and Rrs, we simulated ρm spectra at the GOCI bands by
coupling these simulated Rrs datasets with the Ahamd2000 aerosol
model. The RH, FMF and τa(865) values in the aerosol model are 70,
10 and 0.1, respectively, and the angular geometry is 30, 30 and 90.
The optimization and inversion were processed by the ESOA. The rela-
tive error (RE) of the inversion is estimated by:

RE ¼ Pretrieval−Ptrue

Ptrue
100%; ð15Þ

where Pretrieval is the inverted value, and Ptrue is the true value.
Fig. 19 shows the impacts of variations in the Chla concentration and

CDOMon the retrievals ofCspm, τa(865) andRrs at theGOCIwavebands. At

a constant SPMconcentration, the smaller the change inChla is, the small-
er the inversion error (Fig. 19(a)). If Chla is less than the assumed value of
5, SPM is underestimated; otherwise, SPM is overestimated. The error of
the SPM inversion decreases with increasing SPM concentration. Com-
pared to Chla, the same percentage variation in CDOMhas a greater influ-
ence on the SPM retrieval. For τa(865) (Fig. 19(b)), the inversion error
does not show a clear pattern; when SPM is 20 gm−3, the τa(865) values
at different Chla concentrations are underestimated. The Chla variations
cause less than a 20% RE in the retrieval of Rrs (Fig. 19(c)–(i)). The
CDOM variations cause a greater RE in its retrieval than Chla. The Rrs in-
version error is also related to the variation in CDOM; the smaller the
change in CDOM is, the smaller the inversion error. Similar to SPM, the in-
version RE of Rrs decreases with increasing SPM concentration. In addi-
tion, the influences on short wavelengths (412 and 443 nm) are
greater; the largest RE of Rrs at 412 nm (Fig. 19(c)) is N50%, whereas the
inversion REs of Rrs at the other wavebands are generally b20%.

The results presented in this section confirm that the semi-empirical
SERT model can be successfully applied over waters with high sediment
concentrations, although varying concentrations of Chla and CDOM

Fig. 16. Rrs(λ) spectra derived from the two atmospheric correction algorithms based on ESOA and the NN for station D3 (location shown in Fig. 5) for a MERIS image acquired onMay 7,
2011. The in situ Rrs(λ) spectrum is also shown for comparison.

Fig. 17. The impact of changes in Chla concentration on Rrs. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)
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might affect the linear relationship between the factor x= bb/a and the
sediment concentration, especially in the blue-green parts of the spec-
trum. In addition, when coupling the SERT model with the aerosol
model for atmospheric correction and parameter inversion, the results
demonstrate that although variations in Chla and CDOM have signifi-
cant influences on the τa(865)retrieval (|RE| N 100%), they do not
have a significant influence on the Cspm(|RE| b 25%) and Rrs(|RE| b 60%)
retrievals.

6. Conclusion

This study proposed the ESOA algorithm based on several limita-
tions of the SOA algorithm for atmospheric corrections over turbid

coastal waters. The ESOA algorithm combines Ahmad2010 as the aero-
sol model and SERT as the water model and applies a genetic algo-
rithm for the nonlinear equation optimization. Based on the
validation of a simulated dataset and matchups between GOCI images
and in situ measurements (including fixed station measurements), the
algorithm generated good optimizations for Cspm and τα(865) and was
more accurate for the Rrs(λ) retrieval. The major disadvantage of the
ESOA algorithm is that it is very time-consuming. To overcome this
shortcoming and apply this algorithm to processing satellite images,
a technique that is based on ESOA, assumes a spatially homogenous
aerosol type and uses the fast optimization algorithm LM is proposed.
Although the aerosol type over coastal regions can vary spatially, the
validation results show that this had little effect on the Rrs(λ)

Fig. 18. The impact of changes in CDOM on Rrs. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

Fig. 19. Relative errors (RE in %) of the influences of Chla (red) and CDOM (blue) on the retrieved values of Cspm(a), τa(865) (b) and Rrs at GOCI wavebands: (c) 412 nm; (d) 443 nm; (e)
490 nm; (f) 555 nm; (g) 660 nm; (h) 680 nm; (i) 745 nm. Chla and CDOM are shown on the same X-axis but have different units (mgm−3 andm−1, respectively) and different scales (1
and 10, respectively). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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inversion over the Yangtze River estuary and the adjacent coast. The
ESOA algorithm with this technique is more accurate for Rrs(λ) re-
trieval than the official GOCI standard atmospheric correction algo-
rithm GDPS. ESOA with this technique can also be applied to other
satellite images, such as MERIS. Thus, ESOA is an ideal atmospheric
correction method for satellite images over the Yangtze estuary and
the adjacent coast.
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Appendix A. Implementation details of the GA

A.1. The ranges and encoding schemes of variables

The nonlinear problem in this study includes four unknown vari-
ables: the relative humidity (RH), fine-mode fraction (FMF), aerosol op-
tical thickness τa(λ0) at the reference wavelength λ0 and SPM
concentration (Cspm). The generic algorithm first needs to compose
the variables into individual sequences via an encoding scheme. Com-
mon schemes include binary encoding and real encoding. Real encoding
has the advantage of easy handling, and all of the variables in this
study's nonlinear problem are real numbers. Therefore, the individual
encoding uses real encoding. The ranges of RH and FMF are 30%–95%
and 0–100, respectively. The aerosol optical thickness varies significant-
ly with wavelength. Therefore, we selected the longer near-infrared
wavelengths of the target sensors as the reference wavelengths λ0.
The reference wavelengths λ0 for MERIS and GOCI are 869 and
865 nm, respectively. According to the AERONET observation data, the
aerosol optical thickness at 865 nm is approximately 0.01–0.5. For
turbid coastal waters, the SPM concentrations vary over a wide range.
Shen et al. (2010a,b, 2013) classified water turbidity according to SPM
concentration; specifically, the low, medium, high and ultra-high tur-
bidities are Cspm b 20 (g m−3), 20 (g m−3) b Cspm b 80 (g m−3), 80
(g m−3) b Cspm b 250 (g m−3) and N250 (g m−3), respectively. The
atmospheric correction over low turbidity water (clear water) is be-
yond the scope of this study. Therefore, this study set the range of
Cspm to 20–1000 (g m−3). The ranges of the four variables are shown
in Table A1.

Table A1
Ranges of the four variables.

Variable Minimum Maximum Unit

RH 30 95 %
FMF 0 100
τa(λ0) 0.01 0.5
Cspm 20 1000 g m−3

A.2. Objective function and fitness

The goal of spectral optimization is to match the ρm(λ) spectrum to
the ρw(λ, RH, FMF, τa(λ0), Cspm) spectrum as closely as possible. There-
fore, the RMSE is usually selected as the objective function (Eq. (A1)).In
addition to the RMSE, the correlation coefficient r of theρm(λ) spectrum

and the ρw(λ, RH, FMF, τa(λ0), Cspm) spectrum is an additional objective
function (Eq. (A2)).

pi ¼ ρm λið Þ;
qi ¼ ρaw λi;RH; FMF; τa λ0ð Þ;Cspm

� �
;

obj1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

i¼1 pi−qið Þ2
N

s
;

ðA1Þ

obj2 ¼ N∑N
i¼1 piqi−∑N

i¼1 pi ∑
N
i¼1 qiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N∑N
i¼1 pi2− ∑N

i¼1 pi
h i2r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N∑N
i¼1 qi2− ∑N

i¼1 qi
h i2r ; ðA2Þ

where obj1 and obj2 denote objective function 1 and objective function
2, respectively. As stated above, the two objective functions are the
RMSE (Eq. (A1)) and the correlation coefficient r (Eq. (A2)). The objec-
tive of the former is the minimum value (0), and that of the latter is the
maximum value (1). For the objective function with a minimum goal,
the fitness is its negative fit=−1×obj1, where fit refers to the fitness.

A.3. Genetic operators and parameters

Generic algorithms generally include three types of operators, in-
cluding selection, crossover and mutation, and several important pa-
rameters, such as population size (P), crossover rate and mutation
rate. Several genetic operation schemes are available, such as roulette
wheel (Miller and Goldberg, 1995), tournament selection (Miller and
Goldberg, 1995), one- or two-point and uniform crossover and Gauss-
ian mutation. However, the selection of genetic operators is usually
problem specific, and different combinations of genetic operators di-
rectly affect the performance of the GA. The issue of genetic operators
is not the focus of this study and is not discussed here. This paper uses
the genetic operators that were proposed in NSGA-II (Deb et al.,
2002), which has been demonstrated to find a much better range of so-
lutions and better convergence for most problems. The GA for the spe-
cific problem in this paper is implemented with DEAP (Gagn, 2012),
which is a novel evolutionary computational framework for rapid
prototyping and testing of ideas (https://github.com/deap). Table A2
shows the details of the algorithm implementation, which includes
the genetic operation and several key control parameters. To increase
the probability of finding the globally optimal solution, a larger popula-
tion size and the maximum number of generations are applied. The se-
lection, crossover and mutation operators in DEAP are “selNSGA2"”,
“cxSimulatedBinaryBounded” and “muPolynomialBounded”, respec-
tively. These three genetic operators are implemented based on
NSGA-II. The parameter “eta” is the parameter in the crossover andmu-
tation operator; a high “eta” value will produce children that resemble
their parents.

Table A2
Details of the genetic operators and parameters in this study.

Parameter Value

Population size 300
Maximum number of generations 150
Probability of crossover 0.8
Chromosome coding Real-number coding
Selection operator selNSGA2
Crossover operator cxSimulatedBinaryBounded

eta = 20
Mutation operator muPolynomialBounded

eta = 20
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