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• The FETAX is an established method for
testing developmental toxicity.

• Test chemicals induced multiple
malformations in Xenopus tropicalis
embryos.

• We proposed a phenotypic method with
20 phenotypes and a 0–5 scoring system.

• The phenotypic profiles were character-
istic of different test chemicals.

• The phenotypic method increased the
sensitivity and quantitative measure-
ment.
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The frog embryo teratogenesis assay-Xenopus (FETAX) is an established method for the evaluation of the devel-
opmental toxicities of chemicals. To develop an enhanced FETAX that is appropriate for common environmental
contaminants, we exposed Xenopus tropicalis embryos to eight compounds, including tributyltin, triphenyltin,
CdCl2, pyraclostrobin, picoxystrobin, coumoxystrobin, all-trans-retinoic acid and 9-cis-retinoic acid. Multiple
malformations were induced in embryos particularly following exposure to tributyltin, triphenyltin and
pyraclostrobin at environmentally relevant concentrations. Based on the range of observed malformations, we
proposed a phenotypic assessmentmethodwith 20 phenotypes and a 0–5 scoring system. This derived index ex-
hibited concentration-dependent relationships for all of the chemicals tested. Furthermore, the phenotype pro-
files were characteristic of the different tested chemicals. Our results indicate that malformation phenotypes
can be quantitatively integrated with the primary endpoints in conventional FETAX assessments to allow for in-
creased sensitivity and measurement of quantitative effects and to provide indicative mechanistic information
for each tested chemical.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

The FETAX is a 96-h whole-embryo test that utilizes the embryos of
the frog Xenopus laevis and was originally developed by Dumont et al.
(1983). In 1991, the American Society of Testing and Materials devel-
oped test guidelines for the FETAX, which were subsequently revised
and republished (ASTM, 1998). Validation studies have shown that
the FETAX is valuable for determining the relative developmental toxicity
hazards of chemical agents and complex mixtures (Bantle et al., 1990;
Dawson et al., 1989; Fort et al., 1989; Morgan et al., 1996). This test can
be used as an alternative prescreening test system for conventional
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mammalian organisms in developmental toxicity testing (Bantle et al.,
1999a; Fort et al., 1998; Leconte and Mouche, 2013).

The FETAX assay has consequently been adopted in several ecotoxi-
cology applications to determine the toxicities of common environmen-
tal contaminants such as metals (Bosisio et al., 2009; Fort et al., 2006),
organic compounds (Bacchetta et al., 2008; Chae et al., 2014; Gutleb
et al., 2007), and nanomaterials (Nations et al., 2011). Additionally,
this assay can be used to determine the ecotoxicities of environmental
samples (Chenon et al., 2003; de Lapuente et al., 2014). The primary
endpoints measured in the FETAX include mortality, malformation,
and growth. Adding further chemical-specific, quantifiable, and easily
identifiable endpoints can further enhance the utility of the FETAX as
an environmental monitoring tool.

Phenomics is regarded as the next challenge after genomics and pro-
teomics (Houle et al., 2010). Phenotypes ofmalformation are particular-
ly important features in the teratogenic assessment of chemicals and
have been used in the FETAX (Fort and Paul, 2002; Yu et al., 2011).
Bantle et al. (1999b) published guidelines for the identification of
malformations of X. laevis embryos. Similarly, Kao and Elinson (1988)
used the dorsal and axis index (DAI) to evaluate the degree of malfor-
mation induced in X. laevis embryos by retinoic acids. Likewise, Fort
and Paul (2002) developed a characteristic abnormality approach to
characterize the responses of X. laevis embryos to a teratogenic agent.
This scoring approach provides a more reliable method of assessing re-
sponses and increases the predictability and versatility of the FETAX
(Fort and Paul, 2002). In a similar manner, our previous work involved
the development of the index of axis deficiency (IAD) to evaluate the de-
gree of axis malformation and the index of fin deficiencies (IFD) to evalu-
atefindevelopment inX. (Silurana) tropicalis embryos (Shi et al., 2012; Yu
et al., 2011). Recently, a morphological scoring system for ranking tissue-
specific malformations in a zebrafish (Danio rerio) teratogenicity assay
was also proposed (Brannen et al., 2010; Panzica-Kelly et al., 2010).
Therefore, endpoints that utilizedmalformation phenotypes could equal-
ly be exploited to develop an enhanced FETAX for use in chemical impact
assessments.

The West African clawed frog X. tropicalis is an emerging model an-
imal for developmental biology. This frog is closely related to X. laevis
and shares virtually all of the advantages of X. laevis as an embryological
system.Additionally,X. tropicalis is smaller, has amuch shorter generation
time, and producesmore eggs.X. tropicalis can be used effectively as a test
organism in the FETAX model (Fort et al., 2004). To date, X. tropicalis has
been successfully used as a first-line in vivomodel for chemical screening
and for the testing of reverse engineering approaches (Schmitt et al.,
2014; Wheeler and Liu, 2012).

In the present study, we exposed X. tropicalis embryos to eight envi-
ronmentally relevant compounds including tributyltin, triphenyltin,
CdCl2, pyraclostrobin, picoxystrobin, coumoxystrobin, all-trans-retinoic
acid and 9-cis-retinoic acid. These test materials cover types of contami-
nants that are regarded as potential factors that lead to declines in am-
phibian populations (Alsop et al., 2004; Higley et al., 2013). Tributyltin
(TBT) and triphenyltin (TPT) have been widely used as biocides in anti-
fouling paints and are well-known endocrine-disrupting chemicals.
Such chemicals are already known to induce unique malformations
Table 1
Chemicals used in the experimental exposure.

Compounds CAS Purity Concentrations in the stud

Tributyltin 1461-22-9 ≥95% 50, 100, 200 ng/L
Triphenyltin 639-58-7 ≥95% 1, 3, 5, 6, 8 μg Sn/L
CdCl2 10049-05-5 N95% 0.1, 0.5, 1, 2, 3 mg/L
Pyraclostrobin 175013-18-0 N98% 0.1, 0.5, 1, 2.5, 5 μg/L
Picoxystrobin 117428-22-5 N98% 5, 10, 25, 35, 45 μg/L
Coumoxystrobin NDa 20% 0.5, 1.5, 1.75, 2, 2.5 μg/L
All-trans-retinoic acid 302-79-4 ≥97% 1, 5, 10 μg/L
9-Cis-retinoic acid 5300-03-8 ≥97% 0.25, 0.5, 1, 2.5, 5 μg/L

a ND, no data.
in X. tropicalis embryos at environmentally relevant concentrations (Guo
et al., 2010; Yu et al., 2011). CdCl2 is a common heavy metal with ter-
atogenic properties in X. laevis embryos (Sunderman et al., 1991).
Pyraclostrobin, picoxystrobin and coumoxystrobin are common
strobilurin fungicides (Balba, 2007). All-trans-retinoic acid and 9-cis-
retinoic acid are retinol drugs and known teratogens (Yu et al., 2011).
Both of these acids are typically used to validate new developmental
toxicity methods (Brannen et al., 2010).

Based on the phenotypes observed and published in the literature,
we proposed a phenotypic method that involves 20 phenotypes and a
0–5 scoring system with the aim of developing an enhanced FETAX
with integrated phenomics that was applicable to environmentally rel-
evant chemicals at concentrations found in the environment.

2. Materials and methods

2.1. Chemicals

Eight chemicals were selected for testing (Table 1). Coumoxystrobin
was purchased from Luyuan Agricultural Materials Co., Ltd. (Liaoning,
China). Dimethyl sulfoxide (DMSO) and 3-amino-benzoic acid ethyl
ester (MS-222) were purchased from Sigma-Aldrich (St. Louis, MO,
USA). The remaining chemicalswere purchased from SinopharmChem-
ical Reagent Co., Ltd. (Shanghai, China).

2.2. Husbandry of X. tropicalis and exposure experiments

X. tropicalis adults were obtained from Nasco (Fort Atkinson, WI,
USA). The husbandry of the frogs adhered to the method of Yu et al.
(2011). The 48-h exposure experiments were conducted following
FETAX (ASTM, 1998). In brief, with the exception of CdCl2, the test
chemical solutions were dissolved in DMSO (b0.05%) and prepared
immediately prior to exposure. Ringer solution and DMSO controls
were included. The exposure levels of each chemical were determined
based on the levels that have been reported in the literature, and the
nominal concentrations were used in the present study (Table 1). Four
replicates were performed for each control and treatment group. Twen-
ty embryos with jelly coats at stage 10 were randomly transferred into
acid-washed glass Petri dishes (9-cm diameters) with FETAX medium,
DMSO control solution or the test chemical solution. The disheswere in-
cubated at 26± 0.5 °C for 24 h in the dark to avoid the photodecompo-
sition of some of the chemicals. Any dead embryos were removed, and
themedia renewed at 24-h intervals. After 48 h of exposure, 4 replicate
dishes were sampled from each control and treatment, and the surviv-
ing embryos were immediately anesthetized with 100 mg/L MS-222
and preserved in 70% ethanol for morphological observations.

2.3. Morphological observations and phenotypic determination

The embryos were observed under a Carl Zeiss Discovery V8 Stereo
microscope (MicroImaging GmbH, Göttingen, Germany), and the im-
ages were taken with an AxioCam digital camera. The available litera-
tures involving FETAX was collated, and the various descriptions of
y Maximum environmental concentrations References

425.3 ng Sn/L Jiang et al. (2001)
6.0 μg/L Jones-Lepp et al. (2004)
0.27 μg/L Cd2+ Hamed and Emara (2006)
150 μg/L Bartlett et al. (2002)
238 ng/L Reilly et al. (2012)
ND ND
47.6 ng/L Inoue et al. (2010)
ND ND
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the malformation phenotypes used in the previously published work
were analyzed.
2.4. Statistical analyses

The data were analyzed using SPSS17.0 software. Each dish of 20
embryos was considered as a replicate, and there were 4 replicate
dishes per group (n = 4). Student's t-tests were applied for compari-
sons of two groups (e.g., the Ringer and DMSO controls). The mean dif-
ferences between the treatment and control groups were determined
by one-way analysis of variance (ANOVA) followed by Tukey's HSD
test (homogeneous variances) or Tamhane–Dunnett test (heteroge-
neous variances) and multiple comparisons.
3. Results

3.1. Chemically-induced phenotypes

Multiple malformations were induced by the test compounds, par-
ticularly TBT, TPT and pyraclostrobin, at environmentally relevant con-
centrations of 50 ng/L–8 μg/L (Fig. 1). The most common chemically-
induced phenotypes included abnormal eyes, enlarged proctodaeum,
bent axis, narrow fins, and skin hypopigmentation (Fig. 1). In parallel,
various descriptions of additional phenotypes that have been published
in the FETAX-related literature were compiled (Supplementary 1).
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Fig. 1.Malformations of X. tropicalis embryos induced by the test chemicals. Abbreviations: bn,
heart; ep, edema in proctodaeum; elp, enlarged proctodaeum; et, enlarged trunk; f, fin; hpe, h
daeum; pe, protruding eye; se, small eye; ss, somite segmentation; st, stretched trunk; te, turb
3.2. Phenotype-based morphological scoring system

A phenotypic scoring system comprising twenty selected pheno-
types with six grades for each phenotype (according to their severity
of malformation) was piloted (Fig. 2). The sizes of eyes and changes
in skin pigmentation included two opposite sub-phenotypes. All of
the phenotypes of each embryo were evaluated, and an exact score
in the range of 0–5 was assigned to each phenotype. In the numerical
scoring system, normal anatomic structures were assigned a score of
0. Scores of 1–5 signified abnormalities of increasing severity (1–
2=mild abnormality, 3 =moderate abnormality, and 4–5= severe
abnormality).
3.3. Novel endpoints derived from the phenotypic scoring system

The score of malformation (SOM) and the profile of phenotypes
were taken as two examples of novel endpoints based on the results
of phenotypic classification. The SOM was calculated as the average
value of the total scores for the twenty phenotypes (Fig. 3). The SOMex-
hibited concentration-dependent relationships for each of the tested
chemicals (Fig. 3). For comparison, the traditional percentage of malfor-
mation index was also provided, for which the maximum value used
was 100% (Fig. 3).

The phenotypic profiles of each chemical were observed using the
newly developed scoring system (Fig. 4), which also exhibited dose de-
pendence (Fig. 4).
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Fig. 2. Phenotype classification and scoring system for X. tropicalis embryos. This system contains twenty phenotypes with six grades (0–5) for each phenotype based on the degree of
malformation. The sizes of the eyes and changes in the skin pigmentation include two opposite sub-phenotypes.

261L. Hu et al. / Science of the Total Environment 508 (2015) 258–265



Fig. 2 (continued).
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4. Discussion

In the present study, we piloted a phenotype-based method to en-
hance the assessment of the teratogenic effects of common environ-
mental contaminant chemicals. The FETAX has been widely used as an
assay of developmental toxicology (Chenon et al., 2003; El-Merhibi
et al., 2004; Fort et al., 2006). No extra equipment is needed for the use
of the phenotype-based method, and existing data can be reanalyzed
and examined with the enhanced FETAX method.

Herein, we applied the enhanced method to study the effects of
selected-common and environmentally relevant chemicals. The results
indicated that CdCl2 induced gut malformation, ocular anomalies, bent
notochords, misshapen dorsal fins, facial dysplasia, cardiac deformities,
and dermal blisters in X. tropicalis. These results are consistent with
the work of Sunderman et al. (1991). Similarly, the phenotypes
(i.e., microcephaly, loss of external eyes and bent axis) observed
are consistent with those found in X. laevis embryos following expo-
sure to all-trans retinoic acid (Degitz et al., 2000).
The present work builds on previous studies in that some indices al-
ready assess overall morphological changes or single deficiencies in
Xenopus embryos (Kao and Elinson, 1988; Shi et al., 2012; Yu et al.,
2011); however, these indices are only used for limited teratogenic fac-
tors. Deficiencies in all of the main structures of Xenopus embryos have
been included in the present 20-phenotype array, and these phenotypes
are consistentwith themost commonphenotypes described in the liter-
ature (Fig. 1).

Compared to single phenotypes or indices, the multiple phenotype
assessment system arguably better reflects the complex effects of
chemicals (Kao and Elinson, 1988; Shi et al., 2012; Yu et al., 2011). In
theory, the use of greater numbers of phenotypes should produce better
results. Further studies are needed to validate the present systemby uti-
lizing a greater number of test compounds and environmental samples.
Specifically, additional phenotypes and sub-phenotypes will be collect-
ed, compared and selected from the exposure experiments. The selected
phenotypes and sub-phenotypes should be easily distinguished and ex-
hibit significant concentration-effects. Therefore, the present system
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can be updated with additional sensitive phenotypes or sub-phenotypes
and the removal of some improper phenotypes in the future.

Two examples were used to validate the application of this pheno-
typic method. The percent of malformation has often been used to as-
sess the degree of teratogenicity of the test compounds at specific
concentrations (Bonfanti et al., 2004; Bosisio et al., 2009; Degitz et al.,
2000; Zhu et al., 2013). However, this index loses its power in distin-
guish the differences in the teratogenic effects of compounds at high
concentrations (Bonfanti et al., 2004). In contrast, using the enhanced
method, the malformation scores remained valid even when the per-
cent of malformation reached 100%; thus, the enhanced method repre-
sents a valid endpoint.

There is a further advantage to the enhanced method in that entire
phenotypic profiles can be obtained rather than descriptions of limited
profiles that have typically been reported in recent studies (Nations
et al., 2011; San Segundo et al., 2013). Several approaches have been
suggested for improving the performance characteristics of the FETAX
compared to those of mammalian teratogenicity assays (Fort and Paul,
2002; Leconte and Mouche, 2013). One significant improvement is to
base the EC50 on characteristic malformations only rather than on all
malformations (Fort and Paul, 2002). Characteristic malformations
refer to those that increase in frequency and possibly severity with
increasing concentrations of the test substance. The characteristic
malformations can benumerically distinguished from thewhole pheno-
typic profiles obtained from the phenotypic method piloted herein.

Phenotypes may also reflect the underlying mechanisms of the ef-
fects of each chemical and reflect the endpoints of altered gene expres-
sion (Paules, 2003). For example, the absence of ventral fins and the
presence of posterior anus phenotypes were apparent in X. tropicalis
embryos following exposure to mixtures of TPT and a retinol drug
(bexarotene or LGD1069) in our previous study (Shi et al., 2012). In par-
allel, molecular studies have shown that the loss of gene expression in
Bmp7 and Tsg in X. laevis embryos also results in reduced ventral fins
and even posteriorized anuses (Zakin et al., 2005). As such, phenotype
profiles may also provide indications of potential target genes for fur-
ther mechanistic studies.
In summary, we developed a method of classifying and scoring the
phenotypes ofmalformations in X. tropicalis embryos based on chemical
exposures at environmentally relevant doses. This methodwas success-
fully integrated with the primary endpoints used in the FETAX, which
allowed for a sensitive and quantitative assessment of the effects and in-
dications of the mechanistic underpinnings of the tested compounds.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.scitotenv.2014.11.086.
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