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Introduction
The Yangtze River (Changjiang) is the third longest river in the 
world (~6300 km in length), whose delta comprises both one of the 
cradles of Neolithic civilisation (Chen et al., 2005; Itzstein-Davey 
et al., 2007; Yan and Xu, 1987; Yu et al., 2000) and the present 
economic centre of China. Consequently, the evolution of the 
Yangtze River delta (YRD) and its response to climate change and 
human activities during the Holocene have received considerable 
attention (e.g. Chen et al., 1979; Delta Research Group, Depart-
ment of Marine Geology, Tongji University, 1978; Hori et al., 2001, 
2002; Liu et al., 2010; Song et al., 2013; Wang et al., 2013; Wang Z 
et al., 2018; Yan and Xu, 1987; Ye, 1986, 2018). These studies pro-
vide a general framework for the delta’s evolution and coastline 
shifts since the early Holocene. The modern YRD has formed from 
palaeo-incised valley over the last ca. 8000 years as the sea level 
has approached the present and its rate of rise has decelerated (e.g. 
Song et al., 2013; Stanley and Warne, 1994). As a river delta 
strongly influenced by tide, it evolved from a funnel shaped bay 
into delta through the infilling of the bay, the emergence of sandy 
river mouth bars and the abandonment of distributaries (Delta 
Research Group, Department of Marine Geology, Tongji Univer-
sity, 1978; Goodbred and Saito, 2012; Yan and Xu, 1987). In gen-
eral, the width of the bay has been shortened, and the distributaries 

on the northern side of the mouth bars preferentially silted over the 
last 2000 years (Chen et al., 1979). Stratigraphic study of the delta 
facies typically shows a structure of a prograding tidal-dominated 
delta, which comprised fine-grained prodelta facies, upwards 
coarsening delta front facies and fining delta plain facies in ascend-
ing order (Hori et al., 2001; Yan and Xu, 1987).

A proper understanding of the mechanisms of the delta’s 
formation due to climate change and human activities relies on 
an adequate chronology of its stratigraphy. The last 2000 years 
is an important period as human activities have intensified in 
the catchment and led to accelerate soil erosion (Chen et al., 
1979). Although there have been a number of detailed dating 
studies on cores in the YRD since the 2000s, the chronologies 
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of these cores are mainly based on 14C dating (e.g. Hori et al., 
2001; Li et al., 2014; Long et al., 2014; Wang et al., 2011, 2013; 
Yi et al., 2003; Zhang and Lin, 2017). However, so-called old 
carbon, caused by the reworking of sediment, and radiocarbon 
reservoir effects in the coastal environment lead to the reliabil-
ity of 14C ages being questioned; furthermore, the paucity of 
carbon material in delta front sandy deposits can preclude 14C 
dating entirely (Stanley and Chen, 2000). Over the last 2000 
years, for which historical archives are available in China, 
description of the morphological changes in the delta region 
provides some independent evidence of coastline shifts  
and land changes over a centennial scale. However, such his-
torical documents normally provide information only on the 
emergence of land or coastal retreat, while the aggradation or 
erosion history of the subsurface stratigraphy remains undocu-
mented. It is difficult to determine the driving forces of coast-
line change without a three-dimensional stratigraphical view. 
Therefore, a combination of historical archives with securely 
dated deltaic deposits can provide a better understanding of the 
processes of delta evolution.

In recent years, with the development of optically stimulated 
luminescence (OSL) dating (Huntley et al., 1985; Murray & Win-
tle, 2000, 2003), this technique has been applied to Holocene 
sediments in a number of delta regions including the Mississippi 
(e.g. Chamberlain et al., 2018a; Shen et al., 2015; Shen and Mauz, 
2012), the Ganges–Brahmaputra–Meghna (e.g. Chamberlain 
et al., 2017), the Rhine Meuse (e.g. Wallinga et al., 2010) and the 
Mekong delta (e.g. Sanderson et al., 2007; Tamura et al., 2012). In 
the meantime, a number of OSL dating-based studies have been 
reported in the YRD (e.g. Gao et al., 2016, 2017, 2019; Nian 
et al., 2018a, 2018b, 2019; Nian and Zhang, 2018; Sugisaki et al., 
2015; Wang et al., 2015; Wang F et al., 2018). It has been found 
that the OSL signal of YRD quartz was well bleached, especially 
in the medium-grained quartz (MG, 45–63 μm) (Nian et al., 

2018a, 2018b). These studies have confirmed OSL dating as a 
robust technique that can reliably be used to determine the age of 
Holocene deposits in the YRD.

The Qihai plain is part of the youngest area of land formed on 
the northern part of the YRD (Figure 1a). According to historical 
documents, the Qihai plain has shown a progradation–retrograda-
tion–progradation pattern over the last 1000 years, with the most 
recent emergence around 286 a (AD 1730, all the ages in this 
study are presented in years (a) before AD 2016 for comparison) 
(Chen and Chen, 2010; Tan, 1987; Zhou, 1999). In this study, we 
collected three cores (BX, MQ and WB) from the Qihai plain 
along a south–north transect. On the basis of the OSL ages of 24 
samples (Figure 2 and Table 1) and a comparison with reported 
coastline change inferred from historical archives (Tan, 1987; 
Zhou, 1999), we aim to reconstruct the temporal and spatial varia-
tions of accumulation rate since late Holocene, and to understand 
the controlling factors, such as the migration of delta deposition 
centre (Hori et al., 2001), sediment source changes and the depo-
sitional pattern of distributary and mouth bar units in the delta 
system.

Study area
On the basis of historical documentary evidence from the region 
(Tan, 1987; Zhou, 1999), it is known that the Qihai plain has been 
subjected to a series of phases of deposition and erosion over the 
last 1000 years. From early 14th century, the coast of the Qihai 
plain advanced to the central part of the present plain (Figure 1c). 
However, affected by sea level rise and a shift of the Yangtze 
River’s main channel to the northern branch, the coastline 
retreated during 675–344 a (AD 1341–1672) with the coastline 
extending from Nantong to Lüsi (Figure 1d) (Ling, 2001). In the 
middle 18th century, the main channel moved to the southern 
branch (Zhang and Meng, 2009), land loss gradually ceased and 

Figure 1. (a) The regional location of the Yangtze River Delta (b) showing the details of the study area in the northern part of the Yangtze 
River Delta, China. The rectangle in (b) is enlarged in (c) to (f), with the palaeoshoreline estimated by historical records (Chen and Chen, 2010; 
Tan, 1987; Zhou, 1999) shown in dashed lines (red). The location of cores BX, MQ and WB (yellow stars) is shown with cited cores CM97 
(Hori et al., 2001, 2002), ZK01 (Zhang and Lin, 2017), NT (Nian et al., 2018a), SD (Nian et al., 2018b) and EGQD14 (Gao et al., 2019) from 
previous studies (blue stars). Please visit the journal website to view this figure in color.
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the coastline started to prograde again southward (Figure 1e and 
f) (Chen and Chen, 2010; Tan, 1987; Zhou, 1999). It should be 
noted that the Yellow River discharged into the southern Yellow 
Sea from 888 to 161 a (AD 1128–1855), with the later period 
(522–161 a, AD 1494–1855) delivering abundant sediment to the 
South Yellow Sea and Jiangsu coast (Liu et al., 2010; Zhang, 
1984). Whether this event is linked to the progradation of Qihai 
plain through longshore current delivery is still unclear.

Three cores (BX, MQ and WB), ranging from 23 to 27 m in 
length, were collected from the study area (Figure 1b). Lithologi-
cally, the three cores show a fine-coarse-fine trend from the  
bottom towards the surface enabling three units to be defined 
(Figures 2 and 3). Unit A comprises the bottom part of each core. 
The sediments are dark grey in colour and mainly consist of 
clayey silt with interbedded coarse-silt layers and thin shell beds. 
Unit B comprises the middle part and coarsest layer of the cores. 
The sediments consist of silts and fine sands, and are interbedded 
with thin clay layers. The sediment colour changes from dark grey 
to grey at a depth of ~13 m. Unit C is the uppermost part of the 
cores and shows a fining trend upwards. The sediment is domi-
nated by silty-clay and clayey silt, and is characterised by sand-
mud couplets. The top ~2 or 3 m of the cores comprises yellowish 
clayey silts with redoximorphic features. On the basis of strati-
graphic correlation with neighbouring cores (EGQD14, CM97 
and ZK01) (Figure 2), Unit A comprises shallow sea/prodelta 
facies, while Units B and C are delta front and delta plain facies, 
respectively (Gao et al., 2019; Goodbred and Saito, 2012; Hori 
et al., 2001; Zhang and Lin, 2017).

Method
Particle size
The cores were sectioned at 15-cm intervals throughout each pro-
file and dried at 40°C for particle size measurement. The top part 
of each core, that is, 0.4 m in cores BX and WB and 0.8 m in MQ 
core, comprises disturbed material and was therefore not included 
in our analysis. Particle size distribution was measured using a 
laser particle size analyser (Beckman Coulter LS13-320) after pre-
treatment with 5% H2O2 and 0.2 M HCl to dissolve organic matter 
and biogenic carbonate, respectively. Sodium hexametaphosphate 
(0.5 M (NaPO3)6) was added to encourage complete sediment par-
ticle size disaggregate following ultra-sonication (Lu, 2000).

OSL dating
Particle size analysis of the three cores indicates their dominance 
by silt and fine sand. Previous studies have found that in the YRD 
area, coarse silt-sized (45–63 μm) quartz is normally better 
bleached than fine sand-sized quartz (Nian et al., 2018a, 2018b; 
Nian and Zhang, 2018); consequently, MG quartz was extracted 
for OSL dating.

All three cores were split under subdued red light conditions. 
Eight OSL samples were collected from each core resulting in a 
total of 24 samples. Samples preparation and OSL measurements 
were also performed under subdued red light conditions. The sam-
ples were treated with H2O2 (30%) and HCl (10%) to remove 
organic material and carbonates, respectively. The MG fraction 
(45–63 μm) was separated using wet sieving and then treated with 
silica-saturated H2SiF6 (30%) for at least 3 days (Wang et al., 
2006), followed by rinsing in 10% HCl for 1 h and finally washing 
several times with distilled water. The purity of the quartz sepa-
rated was checked via the OSL IR depletion ratio (within 10% of 
unity) (Duller, 2003) and the 110°C TL peak (Li et al., 2002).

Luminescence measurements were performed on an auto-
mated Risø TL/OSL DA-20 DASH reader with 7.5 mm Hoya 
U-340 filters in front of an ET EMD-9107 photomultiplier tube. 
A calibrated 90Sr/90Y beta source was used for laboratory irradia-
tion. Quartz grains aliquots were stimulated with a 470 nm LED 
light set at 90% of 97 mW cm-2 full power. Quartz grains were 
mounted on 9.7 mm diameter aluminium discs using Silkospray 
silicone oil for multiple-grain aliquot measurements. A mould 
with 3 mm diameter holes and a small soft brush were used to 
ensure the same area of silicone oil. A single-aliquot regenera-
tive-dose (SAR) protocol (Murray and Wintle, 2000) was applied 
to determine the equivalent dose (De) of quartz samples. The ini-
tial 0.4 s of the signals, minus a background estimated from the 
average signal between 0.4 and 1.4 s (early background) (Balla-
rini et al., 2007; Cunningham and Wallinga, 2010), was used for 
De estimation using a single saturating exponential function 
ensuring that the signal is dominated by the fast component. 
Meanwhile, we also calculated the late background results (first 
0.4 s of stimulation minus a background derived from the last 10 
s of stimulation) to compare with the early background results. 
Water content was calculated as the ratio of the water weight to 
the dried sediment weight, allowing an uncertainty of 5% for 
each sample. The concentrations of uranium (U), thorium (Th) 

Figure 2. Lithological description of cores BX, MQ and WB, and their stratigraphic correlation with neighbouring cores EGQD14 (Gao et al., 
2018), CM97 (Hori et al., 2001), and ZK01 (Zhang and Lin, 2017). The age in red has been excluded. The red closed circles represent the quartz 
OSL ages and blue closed circles represent 14C ages. The shell patterns represent the shell layers. Gray, pink, and yellow colors represent clay, 
silt, and sand, respectively.  Please visit the journal website to view this figure in color.
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and potassium (K) were measured using neutron activation anal-
ysis (NAA) (Table 1). Dose rates and OSL ages were carried out 
by DRAC-Calculator 1.2 (Durcan et al., 2015). The elemental 
concentrations were converted into dose rates using the conver-
sion factors of Adamiec and Aitken (1998). An alpha efficiency 
factor (α-value) of 0.04 ± 0.02 (Rees-Jones, 1995) was used for 
MG quartz. Attenuation factors from Brennan et al. (1991) and 
Guerin et al. (2012) were utilised to calculate alpha and beta dose 
rates, respectively.

Results
Particle size distribution
The particle size distribution of cores BX, MQ and WB is shown 
in Figure 3. The bottom part (Unit A) in cores BX and WB dis-
plays a minor fine-coarse-fine trend, while the particle size of 
core MQ becomes coarser with decreasing depth. The mean par-
ticle size of Unit A in core MQ is the coarsest of the three cores, 
with an average value of 70 μm, while the mean of Unit A in cores 
BX and WB are 50 and 58 μm, respectively. Unit B is the coarsest 
layer in each core, with most of the sediments containing more 
than 50% sand fraction. The average values of the mean particle 
size are 77 μm in core BX, 96 μm in core MQ and 61 μm in core 
WB. The particle size of Unit B in MQ core is coarsest in these 
three cores. In Unit C, sediments become finer with decreasing 
depth and the average values of the mean size decreases from 
south to north, that is, core BX (52 μm) > core MQ (35 μm) > 
core WB (29 μm).

OSL dating results

Routine checks on the SAR protocol. In order to obtain suitable 
measurement conditions for the SAR protocol, routine tests are 
conducted including preheat plateau and dose recovery tests 
(Murray and Wintle, 2003). The preheat plateau and dose recov-
ery tests were carried out on samples BX-3, MQ-5 and WB-5 
using varying preheat temperatures from 160°C to 300°C for 10 s 
in 20°C intervals (at least three aliquots per temperature), fol-
lowed by a fixed cut-heat to 160°C. The artificial bleaching for 
dose recovery tests is stimulated twice by blue light LED for 100 
s with a pause for at least 10,000 s. As shown in Figure S1, avail-
able online, preheat plateaus are evident between 160°C and 
220°C for sample BX-3 from core BX (Figure S1a, available 
online), between 160°C and 240°C for sample MQ-5 from core 
MQ (Figure S1e, available online) and sample WB-5 from core 
WB (Figure S1i, available online). The dose recovery ratio is 
close to unity at preheat of 160°C–220°C for sample BX-3 (Fig-
ure S1c, available online), 160°C–240°C for sample MQ-5 (Fig-
ure S1g, available online) and 180°C–220°C for sample WB-5 
(Figure S1k, available online). Based on the above results, a pre-
heat temperature of 200°C for cores BX and WB and 220°C for 
core MQ with a fixed cut-heat of 160°C were selected for the 
SAR protocol. In these experimental conditions, the correspond-
ing recuperation values are lower than 5% and recycling ratios 
range from 0.9 to 1.1 (Figure S1b, f and j, available online). In 
order to further prove the reliability of the selected preheat tem-
peratures, dose recovery test was conducted on all the samples of 
these three cores. The dose recovery ratios (recovered/given dose) 
were between 0.9 and 1.1 (Figure S1d, h and l, available online). 
The above results indicate that the SAR protocol can be applied to 
the samples.

OSL ages. The representative decay curves and dose-response 
curves of MG quartz from samples BX-3, MQ-5 and WB-5 are 
shown in Figure 4. The De values of all the samples are calculated 
using the central age model (CAM) and minimum age model 
(MAM) (Galbraith et al., 1999) with the R package 

‘Luminescence’ (Mercier and Kreutzer, 2017). A sigma-b value of 
0.1 was used for MAM De calculations based on our previous 
study in the area (Nian et al., 2018a, 2018b). The identical results 
calculated by early background (Table 1) and late background 
(Table S1, available online), in combination with the natural OSL 
decay curves (Figure 4a–c), indicate that the signals of quartz sam-
ples are dominated by the fast component, which is consistent with 
our previous studies in the area (Nian et al., 2019). The ages 
obtained with an early background subtraction were chosen in this 
study. The De distributions for all 24 samples presented in com-
bined radial and kernel density estimate plots are shown in Figures 
5 and S2, S3 and S4, available online, which were generated by the 
R package ‘Luminescence’ of the abanico plot (Kreutzer et al., 
2012). Two groups of ages reproduced by the CAM and MAM 
models are generally consistent within the experimental errors 
(Table 1 and Figure 6), indicating that most of the 45–63 μm 
quartz samples were well bleached in the area (Chamberlain et al., 
2018b; Chamberlain and Wallinga, 2018; Nian et al., 2018a, 
2018b). At least to some extent, some samples showed that the 
CAM De values are higher than the MAM De values, especially for 
relative young samples (<500 years) (Figure 6). In a previous 
study (Wang F et al., 2018), we investigated the age of core A6-6 
(mean grain size 20 μm) from the subaqueous delta using 4–11 
μm quartz, and found that OSL ages (<200 years) were ca. 60 
years older than the expected age, through comparisons with 210Pb, 
137Cs, 239+240Pu and microplastics dating, and probably caused by 
incomplete bleaching. However, two different grain-size fractions 
(45–63 μm in this study, 4–11 μm in the previous study) were 
used in these two studies and the deposits belonged to different 
time periods, so the results of core A6-6 cannot be used as a crite-
rion for assessing the degree of bleaching in this study. Small-ali-
quots (3 mm in diameter) yield ca. 2000 grains on a single disc, 
estimated by the function calc AliquotSize() (Burow, 2017) imple-
mented in the R package ‘Luminescence’. According to single 
grain luminescence measurements in the area (Nian et al., 2018b), 
OSL intensities of quartz grains are extremely low, only ca. 0.6% 
of the grains on average can be used to determine the De values in 
the end. There are ca. 12 ‘valid’ grains which passed the rejection 
criteria, calculated using the average value of 0.6%. So the small 
aliquot in the grain-size fractions (45–63 μm) also can reflect the 
degree of bleaching of the samples in the area. Our results showed 
that the CAM De values of some samples are systematically higher 
than the MAM De values (Table 1 and Figure 6); there is variance 
in overdispersion of the De values ranging from ca. 6% to 30% for 
the samples, which suggests that some samples may in fact suffer 
incomplete bleaching and be consistent with our previous study in 
the area (Nian et al., 2018a, 2018b; Nian and Zhang, 2018). Con-
sidering that MAM model yields robust De values of partially 
bleached sediments and consistent De values obtained using the 
CAM model of well-bleached samples, MAM De values are 
adopted in the following discussion. The ages of the samples 
ranged between 190 ± 10 and 2770 ± 140 a for core BX, 220 ± 
20 and 3360 ± 200 a for core MQ and 310 ± 30 and 3490 ± 230 
a for core WB (Table 1 and Figure 7).

Discussion
Reliability of the OSL chronology
The OSL ages of the samples from cores BX, MQ and WB gener-
ally increase with increasing depth and agree well with the wider 
stratigraphic sequence of the area, except for sample WB-5 which 
shows age reversals (Table 1). There are a couple of common 
potential reasons for such OSL age reversals in the YRD area, 
such as incomplete quartz bleaching due to rapid deposition, tur-
bidite sedimentation or sediment reworking caused by gravity 
flow, river floods, tidal currents or typhoon events in general 
(Nian and Zhang, 2018). Considering the sedimentary strata of 
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the core, redeposition of eroded older sediment may take primary 
responsibility for the abnormal OSL age of sample WB-5, and 
therefore, this sample was excluded in the following discussion. 
According to historical records (Figure 1), the most northern cor-
ing site became emergent about 300 years ago (in the middle 18th 
century). The youngest OSL ages of the samples from delta plain 
range from ca. 190 to 340 a, a timeframe that coincides with  

historical documents. The OSL ages in Unit C of the three cores 
become older from south to north, that is, the OSL ages in the 
cores’ top layer are BX < MQ < WB. This indicates that the 
northern part of the study area was formed earliest. This is consis-
tent with the southward progradation trend of the coastline indi-
cated by historical evidence (Figure 1) (Chen et al., 1979; Tan, 
1987; Zhou, 1999).

Figure 4. (a, b and c) Natural OSL decay curves and (d, e and f) the sensitivity-corrected growth curves of samples BX-3, MQ-5 and WB-5.

Figure 3. Down-core variations in the particle size composition of cores BX, MQ and WB; A: prodelta; B: delta front; C: delta plain.
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Our OSL ages in Units B and C of cores BX and WB are close 
to those of the corresponding layer in neighbouring core EGQD14, 
which is younger than 600 a (Gao et al., 2019). It should be noted 
that age reversals also occurred in core EGQD14 (Figure 2). Pro-
delta facies (Unit A) in our cores are older than 2000 a, which is 
similar to that in neighbouring core EGQD14 (>2460 a). Further 
southward, core CM97 includes prodelta facies older than 1510 a 
(Figure 1; Hori et al., 2001).

Sedimentation rates and their environmental 
significance
According to the OSL ages, the sedimentation rates of Unit A 
range from 0.2 ± 0.1 to 0.5 ± 0.1 cm/a. In Units B and C, the 
sedimentation rates increase greatly to 8.6 ± 0.5 cm/a (17.8–2.3 
m) and 9.9 ± 0.7 cm/a (17.6–2.8 m) for cores BX and WB, 
respectively. In core MQ, the top part of Unit B and Unit C has a 
very high deposition rate, that is, 15 ± 2.5 cm/a (11.5–2.5 m), 

Figure 5. De distributions shown as radial plots and kernel density estimate plots for samples BX-3, MQ-5 and WB-5. The grey bar is centred 
on the De calculated by the MAM.
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while the lower part of Unit B (19.6–11.5 m) has a lower sedi-
mentation rate of ca. 0.7 ± 0.1 cm/a (Figure 8).

According to the sharp change in grain size, OSL dating result 
and a broken shell layer in core BX, we infer that there is a sedi-
mentary hiatus between Units A and B. Such an extremely low 
sedimentation rate at the transition of Units A and B indicates that 
the coring site experienced limited sediment deposition for a long 
period. In addition, the erosion of previously deposited sediment 
by extreme events could be also a possible reason (so-called 
Sadler effect, Sadler, 1981), as historical documents show coast 
advancement/retreat in the last 1000 years (Chen and Chen, 2010; 
Ling, 2001; Zhang and Meng, 2009).

The extremely high sedimentation rates in Units B and C, 
and their coarser particle size, reflect the sedimentation charac-
teristic of an estuarine sand bar (Goodbred and Saito, 2012; 
Noel and Robert, 2010). Synthesising of the results of the dating 

of sediment cores in the YRD, we found that the YRD has a 
rapid sedimentation rate in the top ca. 20 m, which covers the 
delta front and delta plain facies (Nian et al., 2018a, 2018b). 
Such river mouth sand bar deposition tends to migrate eastward 
and southward with the progradation of delta. In other words, 
the delta depocenter has migrated to the study site during the last 
500 years, causing the enhanced sedimentation rate in Units B 
and C.

From previous studies, it has been shown that migration of 
river mouth sand bar deposition in the YRD began around 6.0 cal 
kyr BP, when sea levels stabilised (Song et al., 2013). The nearby 
cores NT (Nian et al., 2018a) and SD (Nian et al., 2018b) show 
rapid deposition from 2000 to 1000 a (Figure 8). Our cores show 
a rapid accumulation period during last 500 a, which is consistent 
with nearby core EGQD14. Based on the OSL ages, we find that 
sediment rates in the river mouth bar become faster in the younger 
sediments (Figure 8). Sediment accumulation rates in cores NT 
and SD range from 4.2 ± 0.3 to 4.4 ± 0.2 cm/a (Nian et al., 
2018a, 2018b), while in the more recent cores BX, MQ and WB, 
it ranges from 8.6 ± 0.5 to 15.0 ± 2.5 cm/a (Figure 8).

Such an increased deposition rate at our study site may have 
been caused by the narrowing and shoaling of an incised palaeo-
Yangtze River valley since 2000 a. That is, if sediment supply was 
constant during the Holocene, the continuous deposition of sedi-
ment in the valley will have decreased the accommodation space 
and therefore increased the accumulation rate. Alternatively, this 
feature could have been caused by an increased sediment supply 
since the late Holocene. One explanation for such a change is that 
human activities in the Yangtze River basin have intensified over 
the last 2000 years with a growing population (Chen et al., 1979). 
Alternatively, it is argued that the southern shift of the Yellow 
River mouth to the Jiangsu coast (to the north of the study area) 
between 888 a (AD 1128) and 161 a (AD 1855) delivered abun-
dant sediment to the Yellow Sea (Zhang, 2005) (Figure 1a). A 
proportion of the sediments was carried southward to our study 
area by longshore currents therefore contributing to the rapid 
emergence of land over the last 300 years (Zhang, 2005). The 
exact mechanism involved requires further study.

Furthermore, our OSL dating of multiple cores, densely sam-
pled within a small area, reveals the detailed distribution of 

Figure 6. The relationship between CAM De versus MAM De for 
all samples from cores BX, MQ and WB; the inset shows the ages of 
the samples ranging from 0 to 1000 a.

Figure 7. Age-depth relationships and accumulation curves for 
cores BX, MQ and WB. The MAM ages were used in this figure.

Figure 8. Sedimentation rate variations in cores BX, MQ and 
WB in comparison with previously reported cores SD (Nian et al., 
2018b) and NT (Nian et al., 2018a). The coloured zones reveal 
different stages of rapid deposition, which suggest a general coastal 
progradation trend from northwest to southeast.  Please visit the 
journal website to view this figure in color. 
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sedimentary units within a delta system. A sedimentary hiatus, 
reflected by the OSL ages, is seen in all three cores; however, core 
MQ seems to have received sandy deposits earlier. A comparison 
of particle size characteristics indicates that the sand content in 
core MQ is much greater than in cores BX and WB in Unit B 
(Figure 3). In cores BX and WB, at the boundary between Units 
B and C and the bottom part of Unit B (Figure 2), a shell layer (~3 
cm) indicating an erosional feature was observed. This shell layer 
is not seen in core MQ. We therefore infer that core MQ was 
located on a sandy mouth bar in the former estuary while cores 
BX and WB lay in the neighbouring channels on either side of the 
mouth bar. Such an assemblage of mouth bar and distributary is 
commonly found in tidal dominated estuarine environments. 
From historical documents, it is evident that the Qihai plain 
formed from a number of smaller sand shoals interspersed by 
channels (e.g. Figure 1e). It is interesting, however, that our 
results are consistent with earlier observations in tidally domi-
nated deltas: progradation and land formation are largely through 
the amalgamation of smaller mouth bars and the siltation of dis-
tributaries (Goodbred and Saito, 2012). It demonstrates the het-
erogeneity of deposits with delta environments and that detailed 
sampling and dating is badly needed for proper delta evolution 
reconstruction.

Conclusion
Based on OSL dating using coarse silt-sized quartz (45–63 
μm), we find that rapid aggradation of the delta front and the 
delta plain facies of the Qihai plain on the northern YRD 
occurred within the last 500 a. The underlying prodelta facies 
has an age of more than 2000 a, which is consistent with 
regional stratigraphic and historical documentary evidence. 
The large age gaps between the prodelta and delta front facies 
suggest that the coring sites remained at a water depth of ca. 18 
m for a considerable period before the deposition of sandy river 
mouth bars. Among the three cores studied, the central core 
(MQ) appears to accumulate sandy deposits earlier than the 
neighbouring cores (BX and WB). This suggests that core MQ 
was located on a sandy mouth bar in the former tidal dominated 
estuary while cores BX and WB sat in the neighbouring chan-
nels. Our results demonstrate that the OSL technique can con-
strain estimates of coastline change on centennial scale based 
on documents in historical archives. Such a combined approach 
offers a more confident understanding of coastal geomorpho-
logical evolution processes in a tide-dominated delta.
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