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1.  INTRODUCTION

Over the past few years, the geographic distribu-
tion of microorganisms has become a focus of biogeo-
graphic studies (e.g. Dolan et al. 2006, Martiny et al.
2006, Vyverman et al. 2007, Soininen 2012, Azovsky
& Mazei 2013, Soininen et al. 2016). Due to the high
dispersal rates and large population sizes of microbes,
their spatial distribution patterns and underlying
mechanisms may fundamentally differ from those of
macroorganisms (Martiny et al. 2006, Soininen 2012).
Historically, 2 opposing views about the biogeogra-
phy of microorganisms have gained great attention:
first is the hypothesis of Baas-Becking (1934, p. 15):

‘everything is everywhere, but, the environment
selects’. The rationale behind this view is the niche
assembly mechanism or species sorting, i.e. species
are filtered by environmental factors to occur in suit-
able conditions. Based on this idea, the cosmopolitan
model was suggested by Finlay et al. (1996, 1999),
which maintained that the distribution of microbes is
fundamentally different from that of macroorganisms
and not limited by geographical barriers and dis-
tance. The second view is the moderate endemicity
model suggested by Foissner (1998, 1999), which
postulates that a proportion of microorganisms (e.g.
flagship species) have restricted modern geographi-
cal distributions, which may reflect their original
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geographic ranges on ancient continents. A growing
number of microbial studies have recently indicated
that the relative importance of environmental and
spatial variables on microbes depends on study scale
and ecosystem types (Langenheder & Ragnarsson
2007, Martiny et al. 2011, Soininen et al. 2011, Chytrý
et al. 2012, Soininen 2012, Heino et al. 2014).

In addition to species distributions, the latitudinal
gradient of species richness is one of the most
important topics in macroecology of multicellular
organisms (Hillebrand 2004). However, studies on
latitudinal patterns of microorganisms have been
rarer (but see Rutherford et al. 1999, Dolan et al.
2006, Fierer & Jackson 2006, Vyverman et al. 2007,
Fuhrman et al. 2008, Barton et al. 2010, Passy 2010,
Azovsky & Mazei 2013, Soininen et al. 2016). Col-
lectively, these studies have found various relation-
ships between latitude and microbial diversity. For
example, Passy (2010) found a U-shaped latitudi-
nal pattern for freshwater diatom diversity in the
USA, while a study on the global distribution of lake
benthic diatoms re vealed a hump-shaped relation-
ship, with the highest diversity detected in a tem-
perate zone (Vyverman et al. 2007). For microbes,
the potential drivers of latitudinal diversity patterns
include local environmental variables, such as salin-
ity, pH and habitat availability, and climatic factors,
especially temperature (Rutherford et al. 1999, Vyver -
man et al. 2007, Passy 2010, Azovsky & Mazei 2013,
Soininen et al. 2016).

In addition to taxonomical species composition,
there is a growing interest in the spatial patterns of
trait composition and functional diversity among mi -
crobes (e.g. Green et al. 2008, Soininen et al. 2016).
As traits reflect the ‘things that organisms do’, these
can be more directly linked to species fitness or per-
formance than taxonomical identity (Petchey & Gaston
2006). Moreover, functional diversity considers organ -
isms as dynamic entities that interact with their envi-
ronment (Calow 1987, Laureto et al. 2015). There-
fore, investigating geographical patterns of trait
composition and functional diversity as well as their
potential driving factors can provide a better under-
standing of the relationships between communities
and environmental conditions (McGill et al. 2006,
Villéger et al. 2008, 2011). Consequently, trait-based
approaches can make science more predictive and
able to forecast ecosystem alterations occurring under
rapid environmental changes.

Ciliates, a major group of unicellular eukaryotes,
contribute significantly to the quantity and biodiver-
sity of microorganisms and the energetics of micro-
bial communities (Fenchel 1967). Ciliated protozoa

have been well characterized taxonomically and func -
tionally compared with other groups of protozoa,
which makes it possible to study their spatial patterns
using both species and trait composition. However,
studies on spatial patterns of ciliate communities at
large scales, especially on trait composition and func-
tional diversity, are scarce.

China has a long coastline ranging from the trop-
ics to the temperate zone. These coastal areas are
highly heterogeneous, including divergent habitat
types such as sandy beaches, rocky reefs, salt
marshes and mangroves, which makes it ideal to
examine how environmental and spatial factors in
concert contribute to shaping ciliate distributions.
Our aim was to address the following specific ques-
tions: (1) How does benthic ciliate community com-
position vary along the coast of China at taxonomi-
cal and trait levels, and what are the main factors
driving its variation? (2) Does the functional diver-
sity of coastal benthic ciliate communities show a
latitudinal gradient?

2.  MATERIALS AND METHODS

2.1.  Database

The ciliate data were compiled from different
sources. The data from the coastlines of the
Chinese Bohai Sea, Yellow Sea and South China
Sea were obtained from the marine ciliate biodiver-
sity survey conducted by the Laboratory of Protozo-
ology, Ocean University of China, from 1991 to
2018 (Fig. 1). We collected all species found in ben-
thic habitats, i.e. intertidal sandy beach and man-
grove, during this period. The data sources include
2 mono graphs (Song et al. 2009, Hu et al. 2019) and
all papers published by the Laboratory of Protozool-
ogy, Ocean University of China (for a list of papers,
see http:// scxy. ouc. edu. cn/ lplb/ 13776/ list.htm). Spe-
cies without specific sampling locations were ex -
cluded from the final list. The sampled habitats
along the Bohai Sea and Yellow Sea coasts include
only sandy beaches, while those along the South
China Sea coasts include both sandy beaches and
mangroves. For each site, species occurrences in -
clude data over the entire time period (1990s−2018)
to reduce insufficient sampling effort in each single
sample. The Yangtze River estuary data originated
from Xu et al. (2018b). This data set contained
3 sampling sites in salt marsh habitat (Fig. 1). In
order to facilitate taxonomic consis tency between
different data sets, species-level data were as -
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signed to genus level (presence/absence data) ac -
cording to the systematic classification (Lynn 2008;
see Table S1 in Supplement 1 at www.int-res. com/
articles/ suppl/ m627p049_ supp1.xls for a complete
list of the genera encountered), which resulted in a
data set comprising 220 ciliate genera collected
from 31 sites along the Chinese coast (Fig. 1).

We included 3 local environmental variables:
habitat type (4 levels, i.e. North sandy beach, South
sandy beach, salt marsh and mangrove), de fined as
a categorical variable, and 2 water chemistry vari-
ables, i.e. salinity and pH, which were averaged for
each site (Fig. S1 in Supplement 2 at www. int- res.
com/ articles/ suppl/ m627p049_ supp2. pdf). We deter-
mined latitude for each site using data reported in
the original publications and Google Earth. We also
included 2 climatic variables (annual mean tempera-
ture and annual precipitation) from WorldClim (Hij-
mans et al. 2005) at 30 s resolution. Net primary
productivity (NPP) was extracted from SEDAC at
0.25 decimal degrees (Imhoff et al. 2004). Salinity,
climatic variables and NPP were log-transformed to
better approximate normality of residuals, then all
variables were standardized be fore analysis.

2.2.  Trait analysis and functional diversity

We selected 5 traits sub-divided into 13 cate-
gories (Table 1) according to Xu et al. (2018a).
These traits reflect morphological characteristics
(body size, degree of flexibility and body form)
and behavior (feeding and mobility). Data on traits
were mainly obtained from the original sources in
which the species were described, as well as from
expert opinions and literature (Pratt & Cairns 1985,
Lynn 2008). A fuzzy-coding procedure was used to
account for an individual taxon displaying multiple
trait categories according to Xu et al. (2018b). For
each community, the trait values were averaged by
all species present in a community using the ‘FD’
package in R 3.5.3 (https:// CRAN. R- project. org/
package= FD; Laliberté et al. 2014). To measure
functional diversity, we used functional divergence
(FDiv) since it is independent of sampling effort
(Villéger et al. 2008) and has an advantage over
other functional diversity indices to infer environ-
mental status (Gusmao et al. 2016, Xu et al.
2018b). FDiv was computed using the ‘FD’ package
in R 3.5.3 (Laliberté et al. 2014).

51

Fig. 1. (A) Locations of the study sites along the coast of China, with detailed locations of the sampling sites within squares (B)
I, (C) III and (D) IV. Circles indicate sandy beach habitat and triangles refer to mangrove habitat. Site names are: 1, Tianjin; 2,
Qingdao_Yangkou; 3, Qingdao_Shilaoren; 4, Qingdao_Diaosuyuan; 5, Qingdao_No. 2; 6, Qingdao_No. 1; 7, Qingdao_Zhan-
qiao; 8, Qingdao_Jinshatan; 9, Guangzhou; 10, Zhuhai_Hengqin; 11, Zhuhai_Haibin park; 12, Zhuhao_Qiao; 13,
Shenzhen_Nanshan; 14, HK_mangrove; 15, Shenzhen_mangrove; 16, Shenzhen_Dameisha; 17, HK_Clear Water Bay; 18,
Daya Bay_mangrove; 19, Daya Bay_sandy beach; 20, Zhanjiang_Donghai Island; 21, Zhangjiang_Huguang; 22,
Zhanjiang_Techeng Island; 23, Zhangjiang_Haibin Park;24, Zhanjiang_Guandu; 25, Zhanjiang_Gaoqiao; 26, Haikou; 27, 

Zhanjiang_Haian; 28, Shantou; 29, site 1; 30, site 2; 31, site 3

A
ut

ho
r c

op
y

https://www.int-res.com/articles/suppl/m627p049_supp1.xls
https://www.int-res.com/articles/suppl/m627p049_supp1.xls
https://www.int-res.com/articles/suppl/m627p049_supp2.pdf
https://www.int-res.com/articles/suppl/m627p049_supp2.pdf


Mar Ecol Prog Ser 627: 49–60, 2019

2.3.  Data analyses

The genera presence/absence data were Hellinger
transformed prior to analysis (Peres-Neto et al. 2006).
We analyzed the patterns in species and trait com -
position with non-metric multidimensional scaling
(nMDS) followed by environmental factor fitting to
examine the major structure. Permutational multi-
variate ANOVA (PERMANOVA) was used to deter-
mine the significance of differences in species and
trait compositions among different habitat types
(Anderson et al. 2008). A Bray−Curtis similarity matrix
based on species data and a Gowdis distance matrix
based on traits data were used for nMDS and PERM-
ANOVA. PERMANOVA was conducted on unre-
stricted permutation raw data using 999 random per-
mutations. We used tests of homogeneity of dis persion
(PERMDISP) to examine dispersion of species and
trait composition among the 4 habitat types (Ander-
son et al. 2008). nMDS PERMANOVA and PERM-
DISP were performed in PRIMER 7 + PERMANOVA
(PRIMER-E). We then used redundancy analysis
(RDA) to explain the main patterns in species and
trait composition. RDA was applied with forward
selection, using Monte Carlo Permutation tests (999
permutations), to select only those variables that sig-
nificantly explained variation in the benthic ciliate
communities among sites. Forward selection and
RDA were carried out using the ‘packfor’ and ‘vegan’
packages in R (R Development Core Team). Finally,
we used generalized linear modeling (GLM) with
Gaussian type distribution on square root trans-
formed FDiv to examine the patterns in functional

diversity along the coast of China. We
started with a full model, and the most
parsimonious model was selected
based on Akaike’s information crite-
rion (AIC). We provide the ANOVA
results of the final model. Since the cli-
matic variables were strongly corre-
lated with latitude (r > 0.85), they were
ex cluded from the RDA and GLM.

3.  RESULTS

3.1.  Variability of water chemistry

Generally, the ranges of both salin-
ity and pH in the Yangtze River estu-
ary and southern coastal areas of
China were wider compared to those
in northern China (Fig. S1). Sites

along the Bohai Sea and Yellow Sea were close to
typical marine habitat, with salinity around 30 and
alkaline pH values (7.5−8.0). However, sites in the
Yangtze River estuary and southern China were
more influenced by coastal rivers, so the salinity
varied from 0.3 to 33. In these areas, 16 out of 23
sites were brackish water habitats with salinity
ranging from 10 to 25, and pH values were mainly
alkaline, varying from 7.0 to 8.9, with only 1 excep-
tion where the pH was 6.3.

3.2.  Patterns of species composition

Overall, species composition differed significantly
among different habitat types (PERMANOVA, main
test, p = 0.001; Table 2). However, the difference in
species composition between the South sandy beach
and the North sandy beach or mangrove was not sig-
nificant (Table 2).

The wide variation in species compositional het-
erogeneity was clear in the nMDS plots, which
showed that salt marsh sites were closely clustered
compared with sites of the other 3 habitat types
(Fig. 2A). This pattern was verified by PERMDISP
analysis (Table S2). Moreover, based on nMDS
analysis, spatial and climatic variables had a strong
relationship with species composition on nMDS
axis 2, which separated mangrove from the North
sandy beach, with the South sandy beach in the
middle (Fig. 2A). NPP was correlated with man-
grove and salt marsh while salinity was corre-
lated with the North and the South sandy beach
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Trait                    Category                               Description                                

Feeding type      Bacterivores                         Feeding on bacteria
                           Algivores                              Feeding on algae
                           Predators                              Feeding on flagellates
                                                                          and ciliates
Body size            Small                                     Cell length < 50 µm
                           Medium                                50 µm < cell length < 200 µm
                           Large                                    200 µm < cell length                 
Mobility              Attached to substrate          Non-mobile                               
                           Swimming                            Locomotion by swimming        
                           Crawling                              Locomotion by crawling
                                                                          on substrate
Body form          Dorso-ventrally flattened     Ratio of thickness:width < 1: 4
                           Cylindrical                            Ratio of thickness:width > 1: 4
Cell flexibility     Non-flexible                         Cell non-flexible and
                                                                          non-contractile
                           Flexible                                Cell either flexible or
                                                                          contractile or both

Table 1. Functional trait variables and categories used in the current study
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(Fig. 2A). Water pH correlated notably with nMDS
axis 1. A vector overlay of Pearson correlations of
the typical genera (r > 0.5) with the axes is shown
in Fig. 2B; vectors for 5 genera (i.e. Cinetochilum,

Sathrophilus, Tracheloraphis, Hippo -
comos and Pseudocohnilembus) were
correlated with the North sandy
beach; vectors for 3 genera (Cohni -
lembus, Neo uro stylo psis and Euplotes)
were correlated with the South sandy
beach and mangrove; and 1 genus
(Loxophyllum) was correlated with
salt marsh.

The results from RDA demonstrated
that species composition was related
sig nificantly to both environmental var -
iables, i.e. habitat type and salinity,
and to latitude (Table 3). The total
fraction of the variance explained by

the separately run RDA was 8.4% (Adj R2) and 2.4%
(Adj R2) for habitat type and salinity, respectively,
while the variance explained by latitude was 2.5%
(Adj R2).
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                                                                           Species                   Trait
                                                                        composition          composition

Main test 0.001** 0.001**
Pair-wise test
North sandy beach × Salt marsh 0.017* 0.041*
Salt marsh × South sandy beach 0.019* 0.011*
Salt marsh × Mangrove 0.002** 0.003**
North sandy beach × South sandy beach 0.122 0.022*
North sandy beach × Mangrove 0.002** 0.002**
South sandy beach × Mangrove 0.069 0.296

Table 2. Full output from the 1-factor PERMANOVA by habitat type examin-
ing species and trait composition of benthic ciliates along the coast of China.

Asterisks indicate significance at *p < 0.05, **p < 0.01

Fig. 2. Non-metric multidimensional scaling (nMDS) ordination plots of benthic ciliate communities along the coast of China
based on (A,B) species composition and (C,D) trait composition. Panels A and C also show environmental variables. The length
and direction of each vector in B and D indicate the strength and significance of the relationship between typical genera with
correlation coefficients >0.5 and axes (B) or traits and axes (D). AMT: annual mean temperature; AP: annual precipitation;

NPP: net primary productivity; S: salinity
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3.3.  Patterns of trait composition

Similar to species composition, trait composition
mainly differed significantly among different habitat
types (PERMANOVA, main test, p = 0.001; Fig. 2C,
Table 2), while only the difference between the
South sandy beach and mangrove was not significant
(Table 2).

The nMDS plot showed clear heterogeneity in dis-
persions for sites from different habitat types, with
salt marsh having markedly smaller dispersion than
the other 3 habitat types (Fig. 2C). The test for het-
erogeneity was also statistically significant in the
PERMDISP analysis (Table S2 in Supplement 2). In
addition, spatial and climate variables correlated
strongly with trait composition on nMDS axis 2,
which separated mangrove and South sandy beach
from North sandy beach and salt marsh (Fig. 2C). A
vector overlay of Pearson correlations of functional
traits with the axes is shown in Fig. 2D. The trait cat-
egories for the small, swimming and bacterivore taxa
were positively correlated with North sandy beach
and salt marsh, while medium, crawling, algivores
and predators were positively correlated with man-
grove and South sandy beach (Fig. 2D).

The results from RDA revealed that the trait com-
position was only related significantly to latitude
among all the variables (Table 3). The fraction of the
variance explained by latitude on trait composition
was 18.5% (Adj R2).

For body size, medium size was negatively corre-
lated with latitude (R2 = 0.36, p < 0.01) while large
size was positively correlated with latitude (R2 = 0.28,
p < 0.01; Fig. 3). For feeding type, bacterivores were
positively correlated with latitude (R2 = 0.44, p < 0.01)
while algivores were negatively correlated with lati-
tude (R2 = 0.31, p < 0.01; Fig. 3). For mobility, swim-
ming taxa were positively correlated with latitude

(R2 = 0.36, p < 0.01) while crawling taxa were nega-
tively correlated with latitude (R2 = 0.41, p < 0.01;
Fig. 3). For body form and cell flexibility, we found no
significant correlations with latitude.

3.4.  Patterns in functional diversity (FDiv)

According to GLM, FDiv of benthic ciliates was sig-
nificantly (p < 0.05) related only to latitude, but the
most parsimonious model also included pH and habi-
tat type (Table 4). FDiv showed a significant positive
correlation with latitude (R2 = 0.27, p < 0.01; Fig. 4).

4.  DISCUSSION

4.1.  Species and trait composition

Based on PERMDISP analysis, the heterogeneity of
both species and trait composition varied consider-
ably between salt marsh and the other 3 habitat types
(Table S2). Due to our unbalanced study design, i.e.
different numbers of study sites among the 4 habitat
types, the detection of differences in centroids among
habitat types can be affected by the differences in
within-group dispersions (Anderson & Walsh 2013).
However, Anderson & Walsh (2013) pointed out that
if the group with the larger dispersions also has a
larger number of samples, the results of a PERM-
ANOVA can be conservative. In our study, salt marsh
had a smaller number of samples and smaller disper-
sion compared with the other 3 habitat types. More-
over, a clear visual pattern of the separation of these
sites can be observed in the nMDS plot (Fig. 2A,C).
Thus, the difference in centroids of these habitat
types can be verified.

Furthermore, we evaluated the relative importance
of environmental and spatial factors for variation in
benthic ciliate community composition along the
coast of China, by adopting both trait-based and
more traditional morphological data. RDA showed
that 2 environmental variables, i.e. habitat type and
salinity, and latitude were the main drivers of species
composition, with environmental variables explain-
ing more variation than latitude. Our finding agrees
with the notion that microbial species composition is
jointly driven by local environmental factors and
 spatial or climatic variables, but local environment
ex plains more variance due to the high dispersal
capacity of microbes and strong species sorting (Lan-
genheder & Ragnarsson 2007, Soininen et al. 2007,
Verleyen et al. 2009, Jyrkänkallio Mikkola et al.

54

                        Species composition      Trait composition
R2 (%) Adj R2 (%) R2 (%) Adj R2 (%)

Habitat type 17.6 8.4 − −
Salinity 5.7 2.4 − −
pH − − − −
NPP − − − −
Latitude 5.7 2.5 21.3 18.5

Table 3. Effects of spatial and environmental variables on the
species or trait composition of benthic ciliates along the
coast of China analyzed by redundancy analysis (RDA). The
p-values were calculated from a Monte Carlo test with 999
permutations (p < 0.01). (−): Variables not selected by forward

selection; NPP: net primary productivity
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2017). We also found that habitat type had the
strongest effect on shaping benthic ciliate species
composition. Previous studies on diatoms, bacteria
and fish also showed that habitat type explained a
larger amount of variation in community composition
than local environmental, mainly chemical variables
(Drenovsky et al. 2010, Erős et al. 2012, Jyrkän -
kallio Mikkola et al. 2017). Jyrkänkallio Mikkola et
al. (2017) suggested that habitat type might reflect
the effects of some unmeasured variables. For exam-
ple, the sediment grain size is typically one of the
most important factors in shaping benthic ciliate
community structure (Azovsky & Mazei 2005, 2018,
Hamels et al. 2005, Burkovsky & Mazei 2010). Unfor-
tunately, we lacked grain size data for most of the
original data sources that we collected. Therefore,
we use the habitat type as proxies for the unmea-
sured variables, including sediment grain size, in
explaining community variation.

Salinity was also an important factor in determin-
ing coastal benthic ciliate species composition. This
is congruent with previous studies, which reported
the importance of salinity in shaping coastal and es -
tuarine ciliate communities (Kchaou et al. 2009, Sun
et al. 2017, Xu et al. 2018a). Therefore, in general, our

findings are consistent with the idea
that local environmental conditions
have important effects on taxonomical
com position (Hawkins et al. 2000, Tolo-
nen et al. 2017).

However, we found that the trait
composition of ciliate communities was
mainly driven by spatial or climatic
variables at this regional study scale.
Similar findings were reported in a
study on trait composition of testate

amoebae, with a stronger correlation with spatial
variables compared to environmental factors (Fournier
et al. 2016). However, a study on diatom communities
found that local environmental variables had stronger
effects on trait composition compared to spatial fac-
tors (Soininen et al. 2016). We think this relationship
depends on the traits chosen in the analyses. The
traits of the diatoms used in the analyses by Soininen
et al. (2016) included acid tolerance and nitrogen-
fixing ability, which could be closely related to local
environmental conditions, such as pH and the form
and concentration of nitrogen. However, the traits of
the ciliates analyzed in our study include morphologi-
cal characteristics (body size, degree of flexibility and
body form) and behavior (feeding and mobility),
which may not be as directly linked to local environ-
mental factors, but also to spatial or climatic vari-
ables. A study on copepod trait distributions also re -
vealed clear spatial patterns of body size, which
exhibited a strong positive trend with latitude (Brun
et al. 2016). Kissling et al. (2012) revealed a latitudi-
nal gradient in species richness for different feeding
preferences of birds due to the distribution of food
resources. Here, we detected significant correlations
between latitude and several traits of marine benthic
ciliates (Fig. 3). Based on our findings, the latitudinal
gradient of body size showed a decreasing trend in
medium sized species towards high latitudes, and the
opposite trend in large-sized species (Fig. 3), leading
to a positive correlation between body size and lati-
tude. Considering the strong covariation between
temperature and latitude, we suggest that tempera-
ture plays an important role in driving this spatial
pattern. In fact, Horne et al. (2016) also pointed out
that temperature is the dominant explanatory vari-
able of the spatial patterns in body size of copepods.
Moreover, Atkinson et al. (2003) found a significant
negative trend between temperature and body size
across all protist taxa through a meta-analysis, which
agrees with our findings here.

Spatial patterns of feeding type can be more
directly linked to the distribution of food resources.
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Fig. 4. Relationships between latitude and functional diversity
(FDiv) of benthic ciliates along the coast of China; *p < 0.01

Response variable     Predictor           df        SS           MS           F          p

FDiv                            Latitude             1      0.0034     0.0034    12.416   0.002
                                   pH                      1      0.0003     0.0003     0.948    0.340
                                   Habitat type      3      0.0020     0.0007     2.511    0.082
                                   Residuals          25     0.0067     0.0003

Table 4. ANOVA output of the minimal adequate model showing how environ-
mental and spatial variables affect the functional diversity (FDiv) of benthic
ciliates along the coast of China. Significant effect is marked in bold (p < 0.01)
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Since chlorophyll concentrations correlate positively
with temperature, it is not surprising to find a change
in feeding type composition from bacterivorous to
herbivorous ciliates towards lower latitudes (Fig. 3).
The mobility trait also exhibited a changing trend
from swimming to crawling types with decreasing
latitude (Fig. 3). We think this is because the swim-
ming type co-varied with bacterivores, while the
crawling type co-varied with algivores. The typical
bacterivores found at the North sandy beach in -
cluded Cinetochilum, Sathrophilus and Hippocomos,
which are all scuticociliates and are classified as
being the swimming movement type, while the typi-
cal al givores from the South sandy beach and man-
groves in cluded genera belonging to Spirotrichea
and Phyllopharyngea (crawling types).

We further found that benthic ciliate communities
from the South sandy beach and mangrove habitats
shared a large number of species and traits, al though
these 2 habitat types differed fundamentally. Since
all of the South sandy beach sampling sites were
located close to mangrove habitat, we suggest the
reason for this is the high dispersal ability of ciliates
in a marine system. It is likely that their community
structure at adjacent localities is highly influenced by
mass effects, which means that within a certain
 geographic distance, individuals could also occur
temporarily in less favorable habitats, resulting in
spatially homogenized communities (Pulliam 1988,
Leibold et al. 2004). In fact, Heino et al. (2015) sug-
gested that compared with isolated ponds and lakes,
the importance of mass effects may be higher in
coastal areas and offshore marine systems due to the
high physical connection. Based on our findings,
mass effects could override the effect of species sort-
ing on shaping ciliate communities in marine coastal
systems, especially at smaller spatial extents.

4.2.  Latitudinal gradients in functional diversity

The functional diversity of ciliates was only signifi-
cantly correlated with latitude and showed a positive
trend. This contradicts the general pattern found in
macroorganisms, where species richness and func-
tional diversity peak in (sub)tropical regions (e.g.
Stevens et al. 2003, Hillebrand 2004, Kissling et al.
2012, Pease et al. 2012). However, Hillebrand (2004)
noted that both the strength and slope of this negative
relationship decreased with organism body size, sug-
gesting that such a pattern is weaker in smaller taxa.
Soininen (2012) further emphasized that a high dis -
persal ability and sensitivity to environmental fluc -

tuations could lead to substantially different underly-
ing mechanisms for the latitudinal diversity gradients
among micro- and macroorganisms. In fact, several
exceptions to this classic relationship have been noted
in microorganisms. For example, Soininen et al. (2016)
found species richness of diatoms to scale positively
with latitude, while Passy (2010) reported a U-shaped
latitudinal distribution of freshwater diatom richness in
the USA, with the peaks located in both sub tropical
and temperate regions. Furthermore, studies on pelagic
tintinnid ciliates and foraminifers re vealed a hump-
shaped relationship, with the maximum species num-
ber at 20−30° north or south rather than at the equator
(Rutherford et al. 1999, Dolan et al. 2006), while
Vyverman et al. (2007) showed a hump-shaped rela-
tionship between latitude and lake diatom richness in
the northern hemisphere with the peak located be-
tween 55° and 70° N. Finally, studies on the global dis-
tribution of marine benthic ciliates and heterotrophic
flagellates de tected no significant correlation between
diversity and latitude (Azovsky & Mazei 2013, Azovsky
et al. 2016). In sum, such high variation among study
results points to high context-dependency (e.g. in di-
versity metrics or ecosystem types) in latitudinal rich-
ness gradients in microbial taxa.

The potential drivers behind these deviations are
manifold. Studies on freshwater diatoms suggested
that habitat availability, including lake density and
wetland areas, matched closely with species richness
gradients (Vyverman et al. 2007, Passy 2010, Soini-
nen et al. 2016), whereas in the present study, no sig-
nificant correlation between functional diversity and
habitat types was detected. Moreover, we found that
salinity was not an important factor affecting the func -
tional diversity of ciliates. A study on global marine
benthic ciliates found a significant negative relation-
ship between salinity and species richness (Azovsky
& Mazei 2013); however, the study did not consider
functional diversity. As a result of functional redun-
dancy, the patterns in species richness and functional
diversity do not always follow the same trend (Vil-
léger et al. 2010, Fournier et al. 2012, Xu et al. 2018a).
In the present study, climatic variables strongly
covaried with latitude; thus, climate is a potential
predictor of benthic ciliate functional diversity along
the coast of China. The correlations of species rich-
ness and functional diversity with climatic variables
have been widely reported from macro- to microor-
ganisms, such as birds, soil microbes and foraminife-
rans (Rutherford et al. 1999, Fuhrman et al. 2008,
Kissling et al. 2012). For example, Fernández et al.
(2009) reported that temperature was the most impor-
tant environmental variable showing a clear and con-
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sistent relationship with species richness, but with
opposite effects on different taxa. They found a posi-
tive relationship for planktotrophic marine species,
while a negative relationship was found for directly
developing marine benthic species (Fernández et al.
2009). Species-specific temperature adaptation among
different ciliate groups affects their reproduction and
growth rates at different temperatures (Müller & Geller
1993, Weisse et al. 2001), and therefore, higher tem-
peratures at lower latitudes may confine the distribu-
tion of certain groups of ciliates. We found 11 genera
of the karyorelictean ciliates in the North sandy
beach habitat, but only 2 genera in the South sandy
beach and 3 genera in mangrove habitats. Most spe-
cies within Karyorelictea possess special traits such
as giant body size (200−2000 µm body length), e.g.
Geleia, Kentrophoros and Trachelocercids, and an ex -
tremely flattened body form, e.g. Remanella, Crypto -
pharynx and Apocryptopharynx. Since the FDiv
index measures functional divergence, we think that
the reduction of certain groups of ciliates in southern
China, such as Karyorelictea, would have an impact
on FDiv, leading to a decreasing trend of FDiv
towards lower latitudes. Similar findings were also
reported in a study of the global distribution of mar-
ine benthic heterotrophic flagellates, with lower tax-
onomic diversity in warm regions compared with
temperate and polar zones (Azovsky et al. 2016).
Therefore, whether this positive relationship be -
tween functional or taxonomical diversity and lati-
tude exists in other groups of microbial eukaryotes
needs to be verified in future studies.

5.  CONCLUSIONS

Collectively, our results indicate that benthic ciliate
community composition varies substantially along
the coast of China in response to environmental and
spatial or climate variables. Species composition was
driven by both environmental factors and latitude,
with the former explaining more variation than the
latter, while trait composition was only significantly
correlated with latitude. Moreover, functional diver-
sity also exhibited a significant trend of increasing
towards higher latitudes. Since climatic variables
strongly covary with latitude, we postulated that
temperature is the main factor driving the trait com-
position and functional diversity of benthic ciliates
along the coast of China. Our findings support that
combining analyses of taxonomical and functional
trait data can give more insights into microbial bio-
geography in marine ecosystems.
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