
Satellite Observations of the Diurnal Dynamics
of Particulate Organic Carbon in Optically
Complex Coastal Oceans: The Continental
Shelf Seas of China
XiaodaoWei1, Fang Shen1,2 , Yanqun Pan1, Shuguo Chen3,4, Xuerong Sun1, and YongchaoWang1

1State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China, 2Institute of
Eco‐Chongming (IEC), Shanghai, China, 3Department of Marine Technology, Ocean University of China, Qingdao,
China, 4Laboratory for Regional Oceanography and Numerical Modeling, Qingdao National Laboratory for Marine
Science and Technology, Qingdao, China

Abstract The continental shelf seas of China (CSSC) broadly encompass the Bohai Sea, the Yellow Sea,
and the East China Sea and exhibit highly variable optical properties. Accurate satellite estimates of
particulate organic carbon (POC) remain challenging because optimal proxies for remotely sensed POC are
largely obscure in these optically complex coastal waters. In this study, optical and biogeochemical data,
including the particulate beam attenuation coefficient (cp), particulate backscattering coefficient (bbp),
remote sensing reflectance (Rrs), POC, total suspended matter (TSM), and chlorophyll‐a (Chla), were
collected over multiple seasons and years in the CSSC. We first classified the study area into three different
water types with three different POC retrieval proxies: the TSM for high‐TSM waters, Chla for low‐TSM
waters, and Rrs ratio (Rrs(490)/Rrs(555)) for moderate‐TSM waters. A composite POC algorithm using these
three optimal proxies was then developed for Geostationary Ocean Color Imager (GOCI) satellite data
(hereafter called the POC_CSSC algorithm). The validation results indicated that the accuracy of
GOCI‐derived POC was greatly improved with a mean relative error of 32.08%. Application of the
POC_CSSC algorithm to GOCI data over a tidally impacted estuary demonstrated the robustness of the
algorithm and that tides play different roles in the broad CSSC. More specifically, tides have the strongest
influence on nearshore estuarine waters, regulating the progression of high‐POC water masses from
estuary to offshore environments, while offshore waters were the least influenced by tides with less variable,
low POC concentrations.

1. Introduction

Particulate organic carbon (POC) plays a critical role in sinking carbon fluxes and the transport of elements
into the deep ocean as part of the biological pump (Druffel et al., 1992; Hedges, 1992). POC contains both
living and nonliving materials produced largely via the ingestion and metabolism of organisms (Parsons,
1975). Distribution and transport pathways of POC exert significant influences on biogeochemical models
when evaluating marine organic carbon budgets and assessing marine carbon stocks over regional and
global scales (Pan et al., 2014; Stramska & Cieszynska, 2015). In continental shelf seas where are greatly
influenced by terrestrial material inputs and phytoplankton activities, POC concentrations appear to be
significantly higher than those in open oceans (Zhou et al., 2008).

Stocks of POC over continental seas vary greatly due to differences in the input sources of materials, local
primary production and respiration, transport processes, suspension and sinking, etc. Assessments of spatial
and temporal variations over a large range of POC, however, are often limited by shipboard surveys due to
the immense time and labor demands of these surveys and are therefore relatively scarce (Allison et al.,
2010). Satellite remote sensing provides advantages for quantitatively estimating water optical properties
such as chlorophyll‐a (Chla) and total suspended matter (TSM) concentrations, which can potentially be
related to POC abundance at large spatial scales and over long time series (Le et al., 2017; Liu et al., 2014;
Loisel et al., 2002; Pan et al., 2014). The sensor on board the Geostationary Ocean Color Imager (GOCI),
the first ocean color geostationary satellite with hourly revisits, is able to monitor short‐term oceanic
processes (Ryu et al., 2011), which makes it a powerful tool for monitoring diurnal POC variations in
coastal oceans.
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A number of ocean color algorithms, including both empirical and semianalytical approaches, have been
proposed for satellite POC estimates. One type of POC retrieval algorithm is based on biogeochemical para-
meters such as Chla, which is best suited as a proxy for POC in open‐ocean waters, where POC originates
mainly from phytoplankton and metabolites (Legendre & Michaud, 1999; Sathyendranath et al., 2009;
Stramska & Stramski, 2005). However, in estuarine and nearshore coastal waters, POC is poorly correlated
with Chla and but is better associated with TSM due to the influences of terrigenous runoff (Hung et al.,
2000; Hung et al., 2013; Zhu et al., 2006). The second type of POC retrieval algorithm is based on empirical
relationships, for example, the relationship between POC and remote sensing reflectance (Rrs) data, such as
the algorithm based on the blue‐to‐green (B‐G) band ratio of Rrs (hereafter called the B‐G algorithm;
Stramska & Stramski, 2005; Stramski et al., 2008). The third type of POC retrieval algorithms are semiempi-
rical algorithms (Stramski et al., 1999), which adopt a two‐step strategy that first retrieves inherent optical
properties (IOPs; e.g., the backscattering coefficient bbp or beam attenuation coefficient cp) based on the rela-
tionship between the IOPs and Rrs and then estimates POC based on the relationship between the POC and
the IOPs (Gardner et al., 2006; Stramski et al., 1999). The main difference among these three types of algo-
rithms is the type of optical proxy adopted for the POC inversion. At present, many different proxies, includ-
ing the Rrs band ratio, bbp, cp, Chla and TSM, are commonly used for remote sensing POC retrievals. A
number of studies, however, have indicated that the relationships between POC and different proxies can
greatly vary among water types and seasons, especially in variable, optically complex waters (Boss et al.,
2015; Cai et al., 2015; Cetinić et al., 2012; Gardner et al., 2006; Hu et al., 2016; Hung et al., 2013; Le
et al., 2017).

The continental shelf seas of China (CSSC) are typical Case 2 coastal waters with high turbidity, complex
optical properties that are affected by the runoff of several large rivers (Shen et al., 2010; Ye et al., 2016;
Yu et al., 2016), and varying sources of POC (Hung et al., 2013; Zhu et al., 2006). For example, turbid mar-
ginal seas containmore inorganic mineral particulates than offshore oceanic waters, and these highly refrac-
tive particulates have a substantial influence on the optical properties of turbid marginal seas (Shen et al.,
2010). Therefore, it is difficult to use one general proxy for satellite ocean color to estimate POC in optically
complex waters (Le et al., 2011; Loisel et al., 2013). One possible approach to cope with this challenge is to
classify water into different types based on optical properties (Feng et al., 2005; Huang et al., 2014; Le et al.,
2011; Lubac & Loisel, 2007; Moore et al., 2001) and then develop specific optimal proxies for each water type;
this approach helps to improve the performance of ocean color algorithms in estimating the POC in optically
complex waters. For instance, Huang et al. (2014) proposed an optical classification method and applied it to
the retrieval of TSM and Chla in highly turbid inland waters. This optical classification approach, however,
remains less applicable for the retrieval of POC in coastal waters than in open‐ocean waters. Furthermore,
data on concurrent measurements of POC and bio‐optical properties over the entire continental sea area of
China are limited, and the relationships between POC and optical properties, as well as the mechanisms
underlying these relationships, are not well documented (Wang et al., 2012). Thus, extensive field surveys
on the spatial distribution of POC in the CSSC are clearly needed to better understand the POC dynamics
therein and to develop ocean color algorithms using proper proxies for the POC in this area.

This study presents an extensive data set of in situ measurements, including biogeochemical (POC, Chla,
and TSM) and optical parameters (cp, bbp, and Rrs). The main objectives of this study were to (1) explore
the optimal optical proxies for the remote sensing of POC in the various types of optically complex waters
of the CSSC, (2) develop a new ocean color POC algorithm based on an optical classification for GOCI satel-
lite data, and (3) reveal the POC spatial distribution pattern in the CSSC and the diurnal POC variations in
different water types from GOCI satellite observations.

2. Study Area and Data

The CSSC is located east of mainland China and consists mainly of three seas (the Bohai Sea, the Yellow Sea,
and the East China Sea, encompassing an area of approximately 1.22 × 106 km2; Figure 1). The CSSC, one of
the most productive marginal sea areas on Earth, is among the major global carbon reservoirs worldwide
(Hung et al., 2003; Milliman & Meade, 1983), as it receives significant amounts of terrestrial inputs from
the large Yangtze River and the Yellow River (Hung et al., 2003; Li et al., 2012; Wang et al., 2017; Zhou
et al., 2008). Moreover, the CSSC is a highly dynamic system that extensively interacts with the Kuroshio
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Current, the TaiwanWarm Current, the Yellow Sea Warm Current, and several alongshore currents; conse-
quently, various source materials contribute to the optical complexity of the water in the CSSC (Chen, 2009;
Hung et al., 2000; Zhang et al., 2016). Moreover, the optical properties of the water in the CSSC are further
complicated by the influence of frequent algae blooms (green or red tides; Zhou et al., 2008; Liu et al., 2009;
Shang et al., 2014; Tao et al., 2015).

Field data collection and water sampling broadly covering the CSSC were conducted during six comprehen-
sive cruises over different seasons from 2014 to 2015 (Figure 1 and Table 1). To investigate the diurnal POC
variations, we also conducted time series measurements at Station P (Figure 1b) in the Yellow River Estuary
during 3–4 September 2015.

Figure 1. (a) Location of the continental shelf seas of China. (b) Field sampling stations that match the overpass of the
Geostationary Ocean Color Imager (time window: ±3 hr; matched stations are marked with a pink ×; Rrs stations from
which the in situ Rrs measurements were taken that were used to calibrate and validate the POC algorithm are marked
with a blue +; the green flag indicates monitoring Station P in the Yellow River Estuary [coordinates: 37°55.333′N,
119°17.001′E; water depth: 13.5 m]; and the blue dot denotes the tidal elevation at the Dongyinggang tide gauge station).
(c) Locations of the sampling stations during the six cruises (201402CJ [red +], 201404YS [pink ×], 201405EC [purple Δ],
201503CJ [green +], 201507CJ [dark blue□], and 201508YB [light blue○]) with a magnified view of the Yangtze Estuary
sampling stations provided in (d).
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2.1. Biogeochemical Data

In situ measurements of water optical properties were acquired during six comprehensive field campaigns in
2014 and 2015 (Figure 1c and Table 1). Surface water samples were collected using Niskin rosettes and fil-
tered through 0.7‐μm precombusted GF/F membranes (Whatman, USA) on board the ship under low pres-
sure (i.e., a transmembrane pressure of 19.95 kPa). Sample membranes were stored in a refrigerator at −20
°C. The laboratory analyses closely followed the Joint Global Ocean Flux Study measurement protocols
(Knap et al., 1996). Briefly, sample membranes were dried at 50 °C, acidified to remove carbonates
(Hedges & Stern, 1984), and dried again for organic carbon content analysis using a Vario EL III CHONS
elemental analyzer (Elementar, Germany). The concentrations of POC were calculated as the percentage
of organic carbon multiplied by the sample mass and then divided by the volume of the filtered sample.
An unused membrane was also subjected to all the steps of the analytical procedure, except for water sample
filtration, and the result was used as a base value to be subtracted from the sample membrane results (Zhu
et al., 2006).

We used 0.7‐μm precombusted GF/F filters for TSM analysis. After sample filtration, the filters were rinsed
with distilled water to remove salts and stored immediately in a refrigerator at −20 °C. In the laboratory,
each TSM sample membrane was dried to a constant weight and then measured using a Sartorius analytical
balance (measurement accuracy: 0.1 mg, Germany). The mass of the TSM in each sample membrane was
calculated by subtracting the mass of an unused membrane from the mass of the sample membrane with
particulates. Then, the TSM concentration was calculated by dividing the mass of the TSM by the volume
of the corresponding filtered water sample.

Chla samples were collected and analyzed following the Joint Global Ocean Flux Study measurement pro-
tocols (Knap et al., 1996). Briefly, a water sample (0.2–2 L) was filtered through a Whatman GF/F glass fiber
membrane, and the membrane was folded immediately, covered with aluminum foil and subsequently
transferred into liquid nitrogen. Later, in the laboratory, the Chla concentration was measured using a
Hitachi F‐4500 fluorescence spectrophotometer (Japan).

2.2. Optical Data

The optical data collected in this study included Rrs, cp, and bbp. In situ optical measurements and data post-
processing were conducted following the National Aeronautics and Space Administration Ocean Optics
Protocols (Fargion & Mueller, 2000). Rrs was measured using a sea surface hyperspectral surface acquisition
system (Satlantic Co., Canada). This system consisted of three hyperspectral sensors that measured the inci-
dent solar radiance (Lt), incident skylight radiance (Li), and downwelling spectral irradiance (Ed) at wave-
lengths ranging between 350 and 900 nm. Lt, Li, and Ed over the target water were collected using the
abovementioned water measurement method (Mobley, 1999). To avoid the effects of solar specular reflec-
tions, efforts were made to ensure that the azimuth angle of the observation plane of the target detector rela-
tive to the solar incidence plane was between 90° and 135°, and the zenith angle of the detector was
maintained at 40°. More details can be found in Shen et al. (2014). Rrs was calculated using the following
equation:

Table 1
Sample Information for the Six Cruises Conducted for This Study

Cruise
no. Date Areas

Number
of

stations

Number of samples collected

POC TSM Chla bbp cp Rrs

201402CJ 20 February to 12 March 2014 Yangtze Estuary and adjacent waters 94 94 94 94 79 82 43
201404YS 27 April to 7 May 2014 South Yellow Sea 34 34 34 25 20 31 23
201405EC 18 May to 13 June 2014 East China Sea 68 68 68 55 26 26 22
201503CJ 7–23 March 2015 Yangtze Estuary and adjacent waters 85 85 85 81 67 67 47
201507CJ 9–20 July 2015 Yangtze Estuary and adjacent waters 99 99 99 97 79 81 42
201508YB 17 August to 5 September 2015 Yellow Sea and Bohai Sea 113 132a 132a 131a 125a 132a 31
Total 493 512 512 483 396 419 208

Note. POC = particulate organic carbon; TSM = total suspended matter.
aIncludes data points from continuous observations.
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Rrs ¼ Lw=Ed ¼ Lt−ρLið Þ=Ed (1)

where ρ is the reflectivity of the air‐water interface; ρ was calculated according to the Ruddick‐Hojerslev
model (Ruddick et al., 2006) based on the article published by Sokoletsky and Shen (2014).

Optical transmittance was measured using C‐Star transmissometers with a central light source wavelength
of 660 nm (±20 nm; WetLabs Co., USA). During the 201402CJ, 201405EC, 201503CJ, and 201507CJ surveys,
a C‐Star transmissometer with an optical path length of 0.1 m was adopted. During the 201404YS and
201508YB surveys, a C‐Star transmissometer with an optical path length of 0.25 m was used. The beam
attenuation coefficient at 660 nm (c(660)) was calculated as follows:

c 660ð Þ ¼ −l−1 ln Trð Þ (2)

where l is the optical path length of the transmissometer (l = 0.1 or 0.25 m) and Tr is the optical transmit-
tance measured. Furthermore, the particulate beam attenuation coefficient at 660 nm (cp(660)) was calcu-
lated as follows:

cp 660ð Þ ¼ c 660ð Þ−cw 660ð Þ−cCDOM 660ð Þ (3)

where cw(660) represents the beam attenuation coefficient of “pure seawater” at 660 nm. The transmittance
of pure seawater at 660 nm was set to 91.3%, and cw(660) was approximately 0.364 m−1 (Fairall et al., 1996).
The cCDOM(660) signifies the beam attenuation caused by colored dissolved organic matter (CDOM). In the
red spectral range, the light attenuation caused by CDOM is approximately zero and therefore negligible
(Bricaud et al., 1981). Equation (3) can be rewritten as follows:

cp 660ð Þ ¼ c 660ð Þ−0:364 (4)

The particulate backscattering coefficient, bbp(λ), was measured by an ECO‐BB9 (WetLabs Co., USA) at 412,
440, 488, 510, 532, 595, 660, 676, and 715 nm during the 201402CJ, 201405EC, 201503CJ, 201507CJ, and
201404YS cruises or by a Hydroscat‐6 (HOBILabs Co., USA) at 410, 442, 488, 532, 550, and 640 nm during
the 201508YB cruise. The ECO‐BB9 and Hydroscat‐6 instruments recorded the total volume‐scattering func-
tion in the backward direction at 117° and 140°, respectively (Maffione & Dana, 1997). These two instru-
ments were calibrated before the measurements to confirm their performances within factory
specifications. The bbp(λ) data were calibrated by the temperature‐salinity correction (Zhang et al., 2009)
and absorption correction (Sun et al., 2009) methods. To improve the accuracy of the backscattering mea-
surements, we applied a sigma correction to the strong‐absorption water data measured by the Hydroscat‐
6 (Wang et al., 2016). Further information on the processing procedure can be obtained in the ECO‐BB9
User's Guide and Hydroscat‐6 User's Guide.

2.3. In Situ Data at a Continuous Observation Station

To observe the diurnal POC dynamics and the biogeochemical and optical properties, 38‐hr continuous mea-
surements were made at monitoring Station P (Figure 1b) at the mouth of the Yellow River Estuary on 3–4
September 2015. Water samples were subsequently filtered and analyzed following the procedure in
section 2.1. In this period, only GOCI imagery at 8:30–14:30 on 3 September 2015 was available for further
analysis due to the cloud cover on 4 September 2015.

2.4. Satellite Data and Processing

GOCI Level 1b zenith radiance data were obtained from the Korea Ocean Satellite Center website (http://
kosc.kiost.ac.kr/eng/p10/kosc_p11.html) and subjected to an atmospheric correction to generate sea surface
Level 2 Rrs data. Due to differences in water turbidities throughout the CSSC, a top‐of‐atmosphere reflec-
tance of 0.027 at 412 nm was used as the threshold to differentiate clear and turbid waters. The improved
spectral optimization algorithm for atmospheric correction proposed by Pan et al. (2017) was adopted for tur-
bid waters, whereas the algorithm based on the near‐infrared “black pixel” assumption proposed by Gordon
andWang (1994) was adopted for clear waters. Furthermore, the TSM products were derived from GOCI Rrs
data by implementing the semiempirical radiative transfer (SERT) algorithm (Shen, Verhoef, et al., 2010):
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TSM ¼ 2α=βð ÞRrs

α−Rrsð Þ2 (5)

where α and β are wavelength‐dependent coefficients, which can be calcu-
lated based on the article published by Shen et al. (2014). The Chla pro-
ducts from the Yellow Sea Large Marine Ecosystem Ocean Color Work
Group (YOC) algorithm (Siswanto et al., 2011) were determined as
follows:

Chla ¼ 10 0:342−2:511 log10R−0:277 log10Rð Þ2ð Þ (6)

where

R ¼ Rrs 443ð Þ
Rrs 555ð Þ

� �
Rrs 412ð Þ
Rrs 490ð Þ

� �−1:012

(7)

Masks were applied to pixels on the GOCI imagery within a 3 × 3
extracted pixel array centered at the sampling stations if any of the follow-
ing flags were set according to Bailey and Werdell (2006): atmospheric
correction failure, land, sun glint, cloud or ice, high top‐of‐atmosphere
radiance, low normalized water‐leaving radiance at 555 nm, or stray light.
Matchup data were taken from the GOCI satellite products (i.e., Rrs, TSM,
and Chla) and concurrent in situ measurements. The time window
was constrained within ±3 hr. The matchups used for validation were
chosen if the number of valid pixels after the application of flags was

>4 and if the coefficients of variation for Rrs at 443, 490, and 555 nm were <0.2 sr−1 (Melin et al., 2011).
GOCI Rrs values were then calculated as the averages of the valid pixels in the 3 × 3 pixel arrays, and the
GOCI‐Rrs data used to derive the POC concentrations were derived using the algorithms developed in this
study (section 3.2).

3. Methods
3.1. Optical Classification of Water Types

In this study, we used an approach similar to that proposed by Le et al. (2011) and Huang et al. (2014) to clas-
sify the waters in the CSSC into different types using the normalized slope (NS) criteria (hereafter NS cri-
teria). Basically, the NS values of all 208 Rrs(λ) samples were first calculated and then classified using the
criteria stated below. Rrs(λ) values at GOCI wavebands of 490, 660, and 680 nm were highly correlated with
POC concentrations and therefore could be used to calculate the NS for the optical classification of water
types. Specifically, backscattering by suspended particles is high in the 490 nmwaveband, so this wavelength
is often used to determine TSM concentrations (He et al., 2013); similarly, the 660‐nm waveband usually
contains Chla fluorescence signals, and the 680‐nm waveband is generally associated with a reflection peak
from Chla, so these wavelengths are often used to determine Chla concentrations (Le et al., 2011; Shen et al.,
2010). Accordingly, two NS variables (NS1 and NS2) were calculated as follows:

NS1 ¼ Rrs 660ð Þ−Rrs 490ð Þð Þ= 660−490ð Þ (8)

NS2 ¼ Rrs 680ð Þ−Rrs 660ð Þð Þ= 680−660ð Þ (9)

The Rrs(λ) spectra were therefore grouped into three classes by the optical classification of water types using
these two NS variables (Figure 2). Class 1 (Figure 3b) was defined by NS1 ≥ 0 and Rrs(660) ≥ 0.01 sr−1. The
Rrs(λ) spectra in Class 1 have broad and flat peaks from 550 to 700 nm due to strong backscattering by
numerous suspended particles and can be related to waters with high TSM concentrations (Shen, Salama,
et al., 2010).

If NS1 < 0 or Rrs(660) < 0.01, the Rrs(λ) spectra were defined as either Class 2 (Figure 3c) or Class 3
(Figure 3d). In moderately turbid waters with suspended solids and algal particles, Rrs(680) might be

Figure 2. Flowchart of the optical classification of water types. The paralle-
lograms (▱) and the rectangles (□) represent inputs and outputs, respec-
tively. The rhombi () and the filet rectangles () represent diagnostic analysis
and equations of optical classification, respectively. TSM = total suspended
matter; HT = high‐TSM; MT = moderate‐TSM; LT = low‐TSM.
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higher than Rrs(660) (i.e., NS2 ≥ 0) due to the absorption by algae at 660 nm and the contributions of
fluorescence and scattering from algae and solids at 680 nm. Then, Class 2 waters, which were defined by
NS2 < 0, were further distinguished from Class 3 waters, which were characterized by NS2 ≥ 0. Figures 3c
and 3d show that the Class 2 Rrs(λ) spectra exhibit a single‐peak pattern near 575 nm, while the Class 3
Rrs(λ) have a relatively low order of magnitude in the full band range (Rrs(λ) ≤ 0.025 sr−1).

The spectra of the particulate backscattering coefficients (bbp(λ)) dis-
played pronounced differences in magnitude among the three water type
classes (Figures 3e–3g), implying that the suspended particle content dif-
fered among the three classes. Indeed, the bbp(555) values were highly
variable among the three water classes with an average bbp(555) of 1.381
m−1 for the high‐TSM (HT) waters and average bbp(555) values of 0.099
and 0.016 m−1 for the moderate‐TSM (MT) and low‐TSM (LT) waters,
respectively, determined from in situ measurements. Therefore, the
waters could be grouped into Class 1 HT waters with an average TSM of
94.66 mg/L, Class 2 MT waters with an average TSM of 13.92 mg/L, and
Class 3 LT waters with an average TSM of 4.17 mg/L.

3.2. Development of the POC Retrieval Algorithm

To find the best proxy for remotely sensed POC for each of the three dif-
ferent water types, we investigated the POC and biogeochemical and opti-
cal parameters, including the TSM, Chla, Rrs(λ), bbp(555), and cp(660),
through in situ measurements. Statistical analysis showed that the POC
and TSM had the most significant correlation with R2 = 0.82 in HTwaters
(Table 2 and Figure 4a); therefore, TSM was used as the proxy for estimat-
ing the POC in this water type. For LT waters, the most significant

Figure 3. (a) Rrs(λ) spectra collected in the continental shelf seas of China (n = 208); (b) optical Class 1 spectra for high‐
total suspended matter waters (n= 46); (c) optical Class 2 spectra for medium‐total suspended matter waters (n= 105); (d)
optical Class 3 spectra for low‐total suspended matter waters (n = 57). In (a), the mean Rrs spectra are indicated by red
lines for Class 1, green lines for Class 2 and blue lines for Class 3. (e) bbp(λ) spectra for Class 1 (n= 12); (f) bbp(λ) spectra for
Class 2 (n = 95); (g) bbp(λ) spectra for Class 3 (n = 49).

Table 2
Correlations Between the POC Concentration and the Biogeochemical and
Optical Parameters for Various Water Types Throughout the CSSC

Water type Correlation R2 n

HT waters POC = 5.06 × TSM+37.33 0.82 46
POC = 408.33 × Chla0.028 0.001 46

POC = 8.39 × cp(660)+140.46 0.63 12
POC = 179.14 × bbp(555)+74.7 0.79 12

POC = 112.55 × [Rrs(490)/Rrs(680)]
−3.98 0.67 46

MT waters POC = 2.64 × TSM+66.91 0.28 105
POC = 105.51 × Chla0.28 0.25 103

POC = 13.71 × cp(660)+58.06 0.35 100
POC = 245 × bbp(555)+77.47 0.22 95

POC = 87.30 × [Rrs(490)/Rrs(555)]
−2.04 0.65 105

LT waters POC = − 4.76 × TSM+187.76 0.02 57
POC = 69.9 × Chla0.63 0.72 57

POC = 109.97 × cp(660)+16.22 0.52 53
POC = 5403.23 × bbp(555)+91.92 0.30 49

POC = 83.79 × [Rrs(490)/Rrs(555)]
−3.75 0.63 57

Note. Results with the highest R2 (coefficient of determination) are
marked in bold. CSSC = continental shelf seas of China; POC = particu-
late organic carbon; TSM = total suspended matter.
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correlation was observed between POC and Chla (R2 = 0.72; Table 2 and Figure 4c), and thus, Chla was the
best proxy for estimating the POC in Class 3 waters. However, in MT waters, the correlations between the
POC concentration and TSM, Chla, bbp(555), and cp(660) were relatively low (R2 = 0.28, 0.25, 0.35, and
0.22, respectively; Table 2). Instead, the Rrs(490)/Rrs(555) band ratio appeared to have the most significant
correlation with POC (R2 = 0.65; Table 2 and Figure 4b).

Therefore, an algorithm (hereafter named the POC_CSSC algorithm) was proposed for GOCI POC estimates
as follows using different proxies for estimating the POC in the optically complex waters of the CSSC based
on the optical classification of water types:

POC ¼
5:06×TSMþ 37:33;

87:30× Rrs 490ð Þ=Rrs 555ð Þ½ �−2:04;
69:9×Chla0:63;

8><
>:

for HT waters

for HT waters

for HT waters

(10)

The Pearson correlation coefficient (r), the coefficient of determination (R2), the mean absolute error (MAE),
the mean relative error (MRE), and the root‐mean‐square error (RMSE) were used to evaluate the perfor-
mance of the algorithms. The equations for calculating these statistics are as follows:

MAE ¼ 1
N
∑N

i¼1 Xi;R−Xi;M

�� ��� �
(11)

MRE ¼ 1
N
∑N

i¼1
Xi;R−Xi;M

Xi;M

����
����

� �
×100 (12)

RMSE ¼ 1
N
∑N

i¼1 Xi;R−Xi;M
� �2� �1=2

(13)

where X is the POC, TSM or Chla concentration, N is the number of samples, and the subscripts R and M
indicate estimated and measured variables, respectively.

In this work, the TSM in equation (10) was estimated by using the SERT algorithm proposed by Shen,
Verhoef, et al. (2010), and the Chla in equation (10) was estimated with the YOC algorithm proposed by
Siswanto et al. (2011). We used in situ data to validate the effectiveness of the abovementioned algorithms.
Figure 5 shows the in situ data and estimated data for the TSM estimated from the SERT algorithm, the Chla
estimated from the YOC algorithm and the POC estimated from the POC_CSSC algorithm. The in situ mea-
surements and estimated values were distributed evenly along the 1:1 line with RMSE= 37.23 mg/L,MAE=
63.19 mg/L, and MRE = 43.34% for TSM (Figure 5a); RMSE = 2.91 μg/L, MAE = 4.54 μg/L, and MRE =
117.83% for Chla (Figure 5b); and RMSE = 177.85 μg/L, MAE = 74.83 μg/L, and MRE = 30.89% for POC
(Figure 5c). These validation results indicate that the performance of the SERT algorithm proposed by
Shen, Verhoef, et al. (2010) to retrieve TSM, the YOC algorithm proposed by Siswanto et al. (2011) to retrieve
Chla and the POC_CSSC algorithm proposed in this work are acceptable for optically complex waters.

Figure 4. Relationships between the POC concentrations and the optimal proxies for the three water types from in situ
data. (a) POC versus TSM for HT waters, (b) POC versus Rrs(490)/Rrs(555) for MT waters, and (c) POC versus Chla for
LTwaters. POC= particulate organic carbon; TSM= total suspendedmatter; HT= high‐TSM;MT=moderate‐TSM; LT=
low‐TSM.

10.1029/2018JC014715Journal of Geophysical Research: Oceans

WEI ET AL. 4717



3.3. Other Algorithms for POC Retrieval

Two algorithms, namely, the B‐G algorithm by Stramski et al. (2008) and the maximum normalized differ-
ence carbon index (MNDCI) algorithm by Son et al. (2009), have been widely used to retrieve POC concen-
trations through remote sensing in global ocean waters. Using our in situ data set, the B‐G algorithm was
refined and rewritten as follows:

POC ¼ 72:53× Rrs 443ð Þ=Rrs 555ð Þ½ �−2:13: (14)

Similarly, by fitting the parameters in the MNDCI algorithm, the algorithm can be adjusted and rewritten
as follows:

POC ¼ 10 −294:6x5−156:8x4þ11:22x3þ13:6x2þ2:403xþ1:877ð Þ; (15)

where

x ¼ Rrs 555½ �−max Rrs 412½ �;Rrs 443½ �;Rrs 490½ �½ �
Rrs 555½ � þ max Rrs 412½ �;Rrs 443½ �;Rrs 490½ �½ �

� �
: (16)

In section 6.2, the GOCI‐derived POC determined by the two main algorithms and POC determined by the
proposed POC_CSSC algorithm using our matchups data set were applied to GOCI imagery and compared.

4. Application of the POC_CSSC Algorithm
4.1. Estimating POC From GOCI Data

The hourly GOCI‐derived POC concentrations during the time period from 8:30 to 15:30 (local Beijing time)
displayed a distinct spatial distribution (Figure 6). The highest POC values were observed in the Yangtze
Estuary, Yellow River Estuary, and Subei Bank, which had GOCI‐derived POC >500 μg/L; these high
POC values might be due to the import of large amounts of terrestrial organic matter and the resuspension
of particulate matter in the bottomwater. The GOCI‐derived POC concentrations then decreased in the mid-
dle shelf (e.g., from 500 to 80 μg/L). The lowest values were observed in the offshore East China Sea waters
with GOCI‐derived POC <80 μg/L; in this area, waters with low phytoplankton biomass (GOCI‐derived
Chla <0.4 μg/L) may be influenced by the oligotrophic waters of the Kuroshio and Taiwan Warm Currents.

4.2. Validation of GOCI‐Derived POC

The 45 matchups between the GOCI overpasses and concurrent in situ data from the cruises were used for
the validation of the GOCI‐estimated POC concentrations from the POC_CSSC algorithm. The results show
that the POC_CSSC algorithm gave good estimates of the GOCI‐derived POCwith RMSE= 42.11 μg/L,MAE
= 29.35 μg/L, and MRE = 32.08% (Figure 7).

Figure 5. (a) In situ TSM versus TSM estimated by the semiempirical radiative transfer algorithm. (b) In situ Chla versus
Chla estimated by the YOC algorithm. (c) In situ POC versus POC estimated by the POC_CSSC algorithm. POC =
particulate organic carbon; TSM = total suspended matter; RMSE= root‐mean‐square error;MAE=mean absolute error;
MRE = mean relative error.
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Moreover, the seven matchups between the GOCI overpasses and concurrent in situ data from the contin-
uous observations at Station P presented a good consistency (MAE = 16.57 μg/L,MRE = 15.29%), as shown
in Figure 8. The GOCI‐derived POC (132.24 μg/L) was higher than the in situ POC (128.95 μg/L) at 11:00 a.
m. on 3 September 2015. Notably, although the GOCI‐derived POC concentrations were slightly higher than
the in situ POC concentrations, the two showed an overall similar pattern of variability.

5. Diurnal Variations of POC

To better understand the diurnal variations in the POC concentrations for the various water types distribu-
ted from nearshore to offshore regions, a transect from the mouth of the Yangtze River Estuary (A) to the
middle shelf of the CSSC (B) was overlain onto the imagery of the GOCI‐derived POC concentrations to bet-
ter illustrate the different environmental forcings that drive POC variability in different water types (white
line in Figure 6a). In Figure 9, the GOCI‐derived POC concentrations along the transect gradually decrease
from A to B. This transect may be divided into three sections corresponding to the three water types, i.e., a
section from 122°E to 123°E for HT waters (Figure 9a), a section from 123°E to 124°E for MT waters
(Figures 9a and 9c) and a section from 124°E to 125°E for LT waters (Figure 9d).

More specifically, Figure 9a shows that the hourly POC from 8:30 to 15:30 (e.g., on 7 April 2013) in the HT
waters near the Yangtze River Estuary displayed a pronounced variation, which was impacted by tidal cur-
rents. During this time period, the water elevation recorded by the tidal gauge (white star in Figure 6a) was

Figure 6. Geostationary Ocean Color Imager‐derived POC imagery from the POC_CSSC algorithm for the time period of (a–h) 8:30–15:30 (Beijing time) on 7 April
2013, in the CSSC. To facilitate the discussion in section 5, a transect from themouth of the Yangtze River Estuary (A) to themiddle shelf of the CSSC (B) is shown in
white (a). The white star marks the Lvhua tide gauge station. CSSC = continental shelf seas of China; POC = particulate organic carbon.
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in an ebbing tidal stage (Figure 9b). Thus, all eight GOCI images were
acquired during the ebb tide, when waters were flowing seaward to off-
shore areas in the Yangtze Estuary. With the influence of tidal currents,
high POC concentrations nearshore moved southeastward to offshore
areas, especially the turbidity front at the junction between the HT and
MT waters (near 123°E, Figure 9a). Waters with extremely high TSM
(250–400 mg/L) and POC (1,500–2,500 μg/L) values were in the section
from 122.3°E to 122.5°E (Figure 9a), which corresponds to the maximum
turbidity zone in the Yangtze Estuary. During the ebb tide stage, the high‐
TSM waters and the POC front drifted southeastward along the transect.
As a result, in the HT waters of the nearshore area, the diurnal variation
in the POC was relatively strong, and the tidal current was the dominant
factor regulating this diurnal variation.

Figure 9c shows that the average POC concentration in theMTwaters was
approximately 100 μg/L. The hourly POC from 8:30 to 15:30 in the MT
waters displayed a complicated diurnal variability. The POC concentra-
tion at 8:30 in the partial section was lower than that at 12:30 and 13:30
in the partial section (Figure 9c); this difference seemed to be related to
sunlight. In addition, the hourly POC shifted slightly along the transect
with the tidal current. The reason for these results could be that the
POC in the MT waters was sourced from a mixture of detritus and phyto-
plankton particles, and the diurnal variations of POC were affected by
multiple dynamic and environmental factors.

Figure 9d shows low POC concentrations in the LT waters with an average of 50 μg/L and less variability
along the transect. The POC was lowest at 8:30 and increased gradually from 8:30 to 14:30 (Figure 9d) in this
section, which seemed to be associated with sunlight. The POC concentrations in the LT waters had two
small peaks near 124.45°E and 124.55°E coincident with an increase in Chla from 0.4 to 1 μg/L.

6. Discussion
6.1. Relationship Between POC and Proxy Parameters

In open oceans, where water optical properties are relatively uniform,
POC originates mainly from phytoplankton, and cp(660) and bbp(555)
are usually used as candidates for POC optical proxies (Stramski et al.,
2008; Balch et al., 2010; Cetinić et al., 2012; Table 3). However, in
coastal oceans, the components and concentrations of POC in waters
are variable and impacted by terrestrial inputs, which leads to optical
complexity, and it is difficult to choose an optimal optical proxy of
POC. Our investigations showed that the relationships between POC
and optical properties (e.g., cp(660) and bbp(555)) in the CSSC are highly
variable because of the optical complexity of the waters influenced by
terrestrial sources and phytoplankton release. Table 3 shows that the
optimal optical proxy of POC varied greatly among different water types
in the CSSC. The cp(660) and bbp(555) were more related to the POC in
HT waters than that in MT and LT waters, and bbp(555) was more
related to the POC than cp(660) in HT waters, which were dominated
by organic detritus (Table 2). Conversely, cp(660) was more related to
POC than bbp(555) in LT waters, which were dominated by living phy-
toplankton (Table 2).

However, optical properties such as cp and bbp are usually not provided in
satellite products because cp and bbp vary with the compositions of coastal
waters. This leads to difficulties in defining their retrieval algorithms,
especially in optically complex waters. Thus, we proposed multiple

Figure 8. Diurnal variations in the surface layer at Station P in the Yellow
River Estuary. The blue stars indicate the GOCI‐derived POC concentra-
tions, the red squares indicate the in situ POC concentrations, and the black
circles denote the tidal elevation at the Dongyinggang tide gauge station (as
shown earlier in Figure 1b). Only seven blue stars are present on 3
September 2015, due to heavy cloud cover. The shaded area signifies the
time period of GOCI observations (8:30–15:30). GOCI = Geostationary
Ocean Color Imager; POC = particulate organic carbon.

Figure 7. Validation of the GOCI‐derived POC using the POC_CSSC algo-
rithm developed in this study. Matchups from cruises for HT waters, MT
waters, and LT waters are marked with red circles, green circles, and blue
circles, respectively. GOCI = Geostationary Ocean Color Imager; POC =
particulate organic carbon; TSM = total suspended matter; HT = high‐TSM;
MT = moderate‐TSM; LT = low‐TSM; RMSE = root‐mean‐square error;
MAE = mean absolute error; MRE = mean relative error.
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optical proxies of POC corresponding to various water types (Table 3). From our in situ investigations, the
TSM, Chla, and Rrs band ratio were regarded as POC proxy candidates for HT, MT, and LT waters,
respectively, through correlation analysis (Figure 4 and Table 2).

HT waters occurred mainly in nearshore and estuary areas, and the POC in HT waters, which were highly
impacted by river runoff, was the most related to TSM (Zhu et al., 2006). LT waters occurred mostly in off-
shore areas, where the POC originates mainly from living organisms (mainly phytoplankton;Hung et al.,
2013 ; Zhu et al., 2006). Table 2 indicates that the POC in LT waters had a good correlation with Chla.

Figure 9. Diurnal variations in the Geostationary Ocean Color Imager‐derived POC concentrations along the transect
from A to B (marked with the white line in Figure 6a) on 7 April 2013, (a) in HT waters with the tidal elevations from
the Lvhua tidal gauge station in (b) (marked with the white star in Figure 6a) on 7 April 2013; (c) typical MTwaters and (d)
typical LT waters. POC = particulate organic carbon; TSM = total suspended matter; HT = high‐TSM; MT = moderate‐
TSM; LT = low‐TSM.

Table 3
The Relationship Between POC and POC Proxy Parameters From In Situ Investigations

Relationship Sample R2 Area Season References

TSM POC = 6.068 × TSM −35.088 20 0.99 Yellow Sea and the
East China Sea

Spring Jin et al. (2005)

POC = 5.06 × TSM + 37.33 46 0.82 HT waters of the CSSC February 2014 to September 2015 This study
Chla POC = 162.18 × Chla0.51 510 0.54 Global All seasons Legendre and

Michaud (1999)
POC = 69.9 × Chla0.63 57 0.72 LT waters of the CSSC February 2014 to September 2015 This study

bbp POC = 801.28 × bbp(532) − 4.81 318 0.13 Baltic Sea 2008–2012 Simis et al. (2017)
POC= 179.14 × bbp(555) + 74.7 12 0.79 HT waters of the CSSC February 2014 to September 2015 This study

cp POC = 326.6 × cp(660)+2.0 244 0.87 Gulf of Mexico
(POC% > 25%)

November 1997 to August 2000 Son et al. (2009)

POC = 109.97 × cp(660)+16.22 53 0.52 LT waters of the CSSC February 2014 to September 2015 This study
Rrs POC = 203.2 × [Rrs(443)/Rrs(555)]

−1.034 53 0.87 Eastern South Pacific
Ocean and Atlantic Ocean

October–December 2004
and October–November 2005

Stramski et al. (2008)

POC= 10 6:36x5þ3:26x4−0:37x3−0:4x2þ1:79xþ2:42ð Þ

where x ¼ Rrs 555ð Þ−max Rrs 412ð Þ;Rrs 443ð Þ;Rrs 490ð Þ½ �
Rrs 555ð Þþmax Rrs 412ð Þ;Rrs 443ð Þ;Rrs 490ð Þ½ �
h i 58 0.99 Gulf of Mexico November 1997 to August 2000 Son et al. (2009)

POC= 87.30 × [Rrs(490)/Rrs(555)]
−2.04 105 0.65 MT waters of the CSSC February 2014 to September 2015 This study

Note. CSSC = continental shelf seas of China; POC = particulate organic carbon; TSM = total suspended matter; HT = high‐TSM; MT = moderate‐TSM; LT =
low‐TSM.
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The lowest POC value (approximately 50 μg/L in Figure 6) was found in LT waters, partly due to the rela-
tively low input from terrestrial sources, salinity, and intrusion of oligotrophic Kuroshio waters with low pri-
mary productivity (Zhu et al., 2006; Hung et al., 2013). Because MT waters occurred mainly in the mixing
areas of HT and LT waters and contained both terrigenous organic POC and marine organic POC, neither
TSM nor Chla was the optimal POC proxy. Indeed, it was found that the Rrs(490)/Rrs(555) band ratio was
the most related to the POC in MT waters and therefore constituted the optimal proxy for MT waters
(Table 2).

6.2. Comparison of POC Retrievals Using Different Ocean Color Algorithms

The two POC retrieval algorithms (B‐G and MNDCI) tuned for the CSSC waters were applied to the GOCI
data. The results showed that the GOCI‐derived POC values ranged from 300 to 500 μg/L in the Yangtze
River Estuary, the Yellow River Estuary and Subei Bank (Figures 10a and 10b), and these values were largely
underestimated in comparison with the GOCI POC estimates from the POC_CSSC algorithm that ranged
from 500 to 7,000 μg/L (Figure 6e). Moreover, the spatial distribution of GOCI‐derived POC concentrations
from the B‐G and the MNDCI algorithms did not exhibit a dramatic POC gradient from the estuaries to off-
shore areas. For HTwaters, the POC estimated by the B‐G algorithm (Figure 10a) was approximately 50 μg/L
lower than that derived from the MNDCI algorithm (Figure 10b).

The 1:1 lines in the scatter plots of the in situ POC versus the GOCI‐derived POCmatchup data demonstrate
that the derived POC values were underestimated in the nearshore waters with a large bias and RMSE =
177.35 μg/L, MAE = 73.9 μg/L, and MRE = 62.00% for the B‐G algorithm (Figure 10c) and RMSE =
170.74 μg/L, MAE = 71.17 μg/L, and MRE = 68.54% for the MNDCI algorithm (Figure 10d). This may be
because the Rrs(412) or Rrs(443) used in the B‐G and MNDCI algorithms are highly affected by CDOM
and absorptive nonalgal particles in the blue spectral range in highly turbid waters and inherently contain
large uncertainties from the atmospheric correction for turbid coastal waters (Le et al., 2017). For such
waters, however, our POC_CSSC algorithm utilized longer wavebands to avoid these potential sources of
errors. TSM was used as the proxy to estimate POC in HT waters, and TSM was retrieved using the SERT
algorithm, which adopts Rrs in the red and near‐infrared spectral ranges.

In addition, for the CSSC waters characterized by optical complexity, our POC_CSSC algorithm was based
on the optical classification of water types; that is, the POC_CSSC algorithm adopted different surrogate
parameters to retrieve POC for different water types. Such an approach can effectively improve the accuracy
of the POC retrievals in the optically complex waters of the CSSC. The results demonstrate that the POC con-
centrations derived from our POC_CSSC algorithm can be more accurate than those derived from the B‐G
and MNDCI algorithms in the CSSC.

The POC_CSSC algorithm can also be applied to Sea‐Viewing Wide Field‐of‐View Sensor, Moderate
Resolution Imaging Spectroradiometer, and Medium Resolution Imaging Spectroradiometer satellite data

Figure 10. GOCI‐derived POC imagery derived using the B‐G algorithm (a) and theMNDCI algorithm (b) at 12:30 (Beijing time) on 7 April 2013, in the continental
shelf seas of China. Validation of GOCI‐derived POC using the B‐G algorithm (c) and the MNDCI algorithm (d). Matchups from cruises for high‐total suspended
matter, middle‐total suspended matter, and low‐total suspended matter waters are marked with red circles, green circles, and blue circles, respectively. GOCI =
Geostationary Ocean Color Imager; POC = particulate organic carbon; RMSE = root‐mean‐square error;MAE =mean absolute error;MRE =mean relative error.
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for POC retrievals. The TSM, Rrs, and Chla as proxies of remotely sensed POC in the POC_CSSC algorithm
are general satellite ocean color products that can be obtained from various data centers; that is, Moderate
Resolution Imaging Spectroradiometer products can be obtained from National Aeronautics and Space
Administration, Medium Resolution Imaging Spectroradiometer products from the European Space
Agency, and GOCI products from the Korea Ocean Satellite Center. Regarding the wavebands, the
Rrs(490)/Rrs(555) band ratio used in the POC_CSSC algorithm for MT waters uses common bands that are
routinely measured by most ocean color sensors. Moreover, POC estimates obtained using the POC_CSSC
algorithm in other regions with optically complex waters will also demonstrate a good accuracy if the algo-
rithm is tuned by regional data sets.

6.3. Influence of Environmental Forcing on Diurnal POC Variation

According to our optical classification of water types, the Yangtze River Estuary was composed of HT waters
(Figure 9a). Extremely high POC values (over approximately 2,000 μg/L) were found in the Yangtze River
Estuary and its adjacent areas, that is, along the transect from 122.1°E to 122.5°E (Figure 9a), which correctly
correspond to the maximum turbidity zone of the Yangtze River Estuary. The POC concentrations in HT
waters were strongly correlated with TSM. The POC in the turbidity front along the transect from 123°E
to 123.05°E showed a pronounced shift with the ebb tide, which also influenced the diurnal variation of
TSM (Figure 9b). These findings are similar to the observations of Pan et al. (2018) for the diurnal TSM var-
iation in the Yangtze River Estuary; that is, the diurnal TSM variation in the turbidity front is strongly con-
trolled by tidal currents, while in the turbidity maximum zone, the variation is controlled by both runoff and
tidal currents. Likewise, the study of (He et al., 2013) indicated via GOCI observations that TSM concentra-
tions in the nearshore area of the CSSC have diurnal variability and that the diurnal TSM variation is caused
mainly by tidal dynamics. Therefore, the diurnal POC variations may also be caused by tidal dynamics in HT
waters. Furthermore, sediment discharge, wind, and hydrodynamic conditions may represent other factors
related to TSM and POC variations over a relatively long time scale (e.g., over seasons or years; Qiu
et al., 2017).

The GOCI observations (Figure 9d) revealed that high POC concentrations occurred mainly from approxi-
mately 12:30 to 14:30 in LT waters; this finding implies that the diurnal POC variation in LT waters may
be related to the diurnal variation in phytoplankton abundance due to the diurnal variation in the solar illu-
mination intensity. Sun et al. (2018) reported that the Chla concentration generally presents a maximum
around noon, and the diurnal variation in Chla might result from the ability of phytoplankton to photo-
synthesize. In addition, these results imply that the POCmay originate from local phytoplankton production
and less from inputs of terrestrial organic matter.

Ultimately, the diurnal POC variations in the MT waters of the CSSC were complicated. This complexity
might be affected by multiple dynamic and environmental factors. MT waters constitute a mixture of HT
and LT waters, which may be influenced by terrestrial sources and phytoplankton release, respectively. In
the future, it will be necessary to carry out in situ synthetic observations of multiple dynamic and environ-
mental factors, including POC, in different water types to understand POC dynamics.

7. Conclusions

In this study, a large data set of matchups between biochemical parameters (POC, Chla, and TSM concen-
trations) and optical properties (cp, bbp, and Rrs) in the CSSC was obtained through six comprehensive
cruises and then used to explore the optimal optical proxies for the POC to develop a remote sensing POC
retrieval algorithm for various water types. The detailed findings in the CSSC were obtained as follows.

1. The CSSC waters were classified into three types (HT, MT, and LT waters) using a remote sensing optical
classification algorithm. Three proxies, namely, TSM for HT waters, Chla for LT waters and Rrs(490)/
Rrs(555) for MT waters, were proposed for retrieving POC from remote sensing data. The validation
results indicate that the POC retrieval accuracy (RMSE = 42.11 μg/L, MAE = 29.35 μg/L, and MRE =
32.08%) of the proposed method was considerably better than that of the B‐G band ratio algorithm and
the MNDCI algorithm.

2. The GOCI‐derived POC concentrations showed good agreement with the in situ time series observations
withMAE= 16.57 μg/L andMRE= 15.29%. More broadly, the application of the POC_CSSC algorithm to
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the GOCI satellite data revealed that tides exert a strong influence on POC, primarily in nearshore estuar-
ine waters (HT waters) with high GOCI‐observed POC concentrations (the water mass with a POC of
1,500–2,500 μg/L progressively moved offshore). However, the offshore LT waters were less influenced
by the tides than were the nearshore waters, demonstrating relatively low POC variability (~50 μg/L),
and the POC concentrations in the MT waters were influenced by both tides and other environmental
factors.
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