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The prediction of the erosion ofmudflats is hampered by inaccurate estimates of the erodibility distribution of the
sediment bed. To investigate how erodibility varies in space andwhat the vertical distribution over the sediment
depth is, comprehensive observations of the sediment properties, hydrodynamics and bed-level changes were
conducted on an intertidal flat in theWestern Scheldt Estuary, the Netherlands. The erosion potential on a mud-
flat is determined by the critical shear stress for erosion (τe), erosion rate coefficient (M) and local hydrodynamic
conditions. A clear difference in hydrodynamic forcingwas observed, leading to significant bed level variations at
the low water line, where erosion often occurs during very shallow water condition, and a nearly constant bed
level at the upper part. The erosion parameters τe and M could be determined over a sediment bed of 12 cm at
the low water line. The erosion coefficient M can be considered constant with depth, although there is a large
spreading. A clear vertical variation of τewas found: τe increased significantly downward from0.10 Pa at the sed-
iment surface to 1.13 Pa at 12 cm below the surface. Additionally, there was a strong indication that the presence
of diatoms enhanced τe in the upper 2 mm of sediment by five times of the abiotic τe (from 0.09 Pa to 0.46 Pa).
These findings lead to the following improvement for predicting morphological changes of tidal mudflats:
(1) very shallow conditions should be better simulated, (2) the vertical distribution of τe should be considered.
Otherwise, erosion rates can be overestimated, especially during extreme events, because exposure of the deeper
well-consolidated layer likely occurs; and (3) an appropriate description of the effect of diatoms should be con-
sidered as part of the bottom boundary condition.

© 2019 Elsevier B.V. All rights reserved.
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In situ measurement
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Erosion rate
Storm
1. Introduction

Tidal flats play a key role in estuarine ecosystems and are important
buffers against coastal flooding (Costanza et al., 1997; Goodwin et al.,
2001; Barbier et al., 2008). However, tidal flats are threatened by an-
thropogenic interventions (e.g., upstream damming, storm surge bar-
riers and deepening of navigation channels) and by climate change
(e.g., accelerated sea level rise); see Chu et al. (2006); Yang et al.
(2006); Blum and Roberts (2009); Andersen et al. (2011); Wang et al.
(2015); Yang et al. (2015); de Vet et al. (2017). Predicting the response
of tidal flats to these interventions and climate changes forms an impor-
tant aspect of the assessments of management scenarios. Predictions of
the morphological evolution of tidal flats are however not straightfor-
ward, as it is a complex outcome of tidal currents, waves, bed and
suspended sediment properties, and even ecological processes. They
rely on a number of assumptions, like considering a one-dimensional
cross-section only, or simplifying the effects of waves and the heteroge-
neity of bed sediment properties, see e.g. van der Wegen et al. (2017),
Maan et al. (2018).

Various steps have been taken to overcomeall shortcomings of these
models. In this paper, we focus on a specific aspect, namely the erosion
rate formulation and its parameters. The erosion rate in these models is
often calculated based on the so-called Partheniades' erosion equation,
which is expressed as:

E ¼ M τcw−τeð Þ or E ¼ M0 τcw
τe

−1
� �

forτcwNτe ð1Þ

where E (kg/(m2 s)) is the erosion rate,M (s/m) andM′ (kg/(m2 s)) are
the erosion coefficients, τcw is the total bed shear stress under the com-
binedwave–current action, and τe is the critical shear stress for erosion.
In manymodel studies, the empirical erosion parametersM (orM′) and
τe are specified as constants. However, these two parameters vary with
the sediment characteristics (e.g., sediment composition, bulk density,
consolidation state) and even with biological interactions (Mitchener
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mailto:slyang@sklec.ecnu.edu.cn
Journal logo
https://doi.org/10.1016/j.geomorph.2019.106834
http://www.sciencedirect.com/science/journal/
www.elsevier.com/locate/geomorph


2 Q. Zhu et al. / Geomorphology 345 (2019) 106834
and Torfs, 1996; Le Hir et al., 2007; van Prooijen et al., 2011). Recently,
efforts have been taken to study the relationship between erosion
threshold of sand-mud mixture with porosity and grain size distribu-
tion, mainly the mud fraction (van Rijn, 2007; Wu et al., 2018; Yao
et al., 2018). The values of τe and M have been proven to be site-
dependent and to vary over wide ranges (Whitehouse, 2000;
Winterwerp et al., 2012). The tuning of their values determines the ap-
plicability of existingmodels in simulating the sediment transport in es-
tuarine and coastal areas, and above all, the realism of the erosion law
(Ge et al., 2015).

The estimation of the erosion threshold has remained a challenge
(Andersen et al., 2007; van Prooijen and Winterwerp, 2010; Salehi
and Strom, 2012). Efforts have been made over the last two decades
to measure the erodibility of sediment beds; see the summary by Le
Hir et al. (2008). Measurements in laboratory flumes have been per-
formed using artificial kaolinite or homogenous mixtures to study the
effect of cohesion on the bed strength (Mehta and Partheniades, 1982;
Gomez and Amos, 2005; Jacobs et al., 2011). However, the sediment
beds in these experiments were not similar to real sediment beds.
Other studies have used an alternative approach: an undisturbed sedi-
ment core is placed in an erosion device, and a controlled forcing is im-
posed on the sediment surface (e.g., Gust and Morris, 1989;
Schünemann and Kühl, 1993; Austen et al., 1999; Bohling, 2009;
Dickhudt et al., 2009; vanMaren et al., 2009). In addition, in situ annular
flumes have been used directly on sediment beds (Amos et al., 1992;
McNeil et al., 1996; Widdows et al., 1998; Houwing, 1999; Tolhurst
et al., 1999; Paterson et al., 2000; Neumeier et al., 2006; Ravens,
2007). These devices aimed to determine the resuspension characteris-
tics, but were always difficult to operate and time-consuming (Le Hir
et al., 2008). In contrast to the various flumes/devices with unidirec-
tional flows, Andersen et al. (2007) determined the critical erosion
shear stress by comparing time series of the bed shear stress and bed-
level changes in high frequency (also see Verney et al., 2007; Salehi
and Strom, 2012; Shi et al., 2015). This approach, as also applied in
this study, yields the erosion thresholds of the surface sediment layers
exposed to water and requires accurate estimations of the bed shear
stress under natural wave–current action.

The erosion thresholds for coarser particles, such as sand and gravel,
can be estimated for known grain size distributions (Shields, 1936).
However, when the sediment bed is dominated by mud (grain size
≤ 63.5 μm), the sediments are stabilized by cohesive forces caused by
the surface charges acting on each particle (Kuti and Yen, 1976; Amos
et al., 1996; Taki, 2001). van Ledden (2003) proposed a clay (grain
size ≤ 3.9 μm) content of 7% (with a constant silt/clay ratio for a certain
system) as the transition between cohesive and non-cohesivemixtures.
A lower critical shear stress for erosion has often been related to a lower
bulk density of relatively freshly depositedmud (Mehta, 1988; Delo and
Ockenden, 1992; Armanini, 1995; Mitchener and Torfs, 1996; Taki,
2001).

The biological effects on the erosion threshold of mud beds are also
important (Andersen et al., 2005; Le Hir et al., 2007). Generally,
microphytobenthos act as stabilizers because they form a biofilm by
producing extracellular polymeric substances (EPS) that protect the
sediment surface against hydrodynamic forces (Austen et al., 1999;
Riethmüller et al., 2000; de Brouwer et al., 2005; Andersen et al.,
2010). Meso- and macrozoobenthos are mainly destabilizers. For in-
stance, the benthic bivalve Macoma balthica is a bioturbator whose
burrowing and feeding activities increase the sediment erosion poten-
tial (Willows et al., 1998; Widdows et al., 2000; van Prooijen et al.,
2011), and the mud snail Hydrobia ulvae increases the erodibility by in-
creasing the bed roughness and egesting organic pellets that are easily
eroded (Andersen and Pejrup, 2002; Orvain et al., 2003; Orvain et al.,
2007).

The literature overview as given above indicates the uncer-
tainties in the definitions of the erosion rates and its parameters.
It also shows a lack of direct estimations from field measurements.
Furthermore, many lab experiments are based on cores exposed to
(uniform channel) flow. The response of the bed to waves is not
considered. We therefore set up a field campaign to determine the
erosion rates in-situ for realistic flow and wave conditions.

Three frames were placed on a mud flat to relate the bed ero-
sion potential in both the cross-shore and vertical dimensions
with hydrodynamic forcings. Instruments were mounted on the
frames to measure the wave and current regimes, suspended sed-
iment concentration (SSC), bed sediment properties, and bed-
level. In this way, we could: (1) quantify the spatial and temporal
variability of critical shear stress of an undisturbed natural mud
bed; (2) estimate the influence of biota on erosion threshold;
and (3) determine the stability of a semi-enclosed mud bed in a
natural wave–current environment. This paper aims to improve
the input of erosion parameters in the erosion modules of fine-
grained bed morphodynamic models.

The paper is organized as follows. Section 2 gives an overview
of the study area, the mudflat in the Western Scheldt, the
Netherlands. The measurement campaign is described in
Section 3. This section provides the definitions of variables and
parameters as well. Results are shown in Section 4. The interpre-
tation and discussion of the results follows in Section 5. This sec-
tion also provides a discussion of the implications of the results.
Conclusions are drawn in Section 6.

2. Study area

In situ measurements were carried out on the Kapellebank
mudflat, a semi-enclosed tidal flat along the north bank of the
Western Scheldt Estuary in the Netherlands (Fig. 1b). The tidal
flat has a long-shore length of 1.8 km and a cross-shore length
of 0.9 km. The tidal flat faces a channel to the south. The tide is
semi-diurnal with a mean tidal range of approximately 4.5 m,
which indicates a macrotidal regime. The bed slope of the flat is
mild (ca. 3‰). The dominant wind direction is southwest, leading
to wind waves exposure of Kapellebank. The average wave height
in the adjacent channel is about 0.15 m (Maan et al., 2018). Our
measurements and previous measurements showed that the bed
sediment of this area is dominated by mud (Kuijper et al.,
2004). From early spring until the onset of summer, 80% of the
surface of the intertidal flat is covered by a visible brown biofilm
that forms a hummock-hollow pattern (Fig. 1e; Weerman et al.,
2011).

The observation siteswere located on a transect perpendicular to the
channel (Fig. 1c). The lowest site, Site A1, was located at the interface
between the intertidal flat and the channel (51°27′24″N, 3°58′21″E) at
an elevation of −1.84 m NAP (Amsterdam Ordnance Datum, approxi-
mately MSL) (Fig. 1d). The bed elevations of sites A2 (51°27′30″N,
3°58′24″E) and A3 (51°27′37″N, 3°58′27″E) were −0.98 m and
−0.25 m NAP, respectively.

3. Material and methods

3.1. Data collection

The observations were carried out from April 28 to May 25, 2014.
Wave-logger (OSSI-010-003C, Ocean Sensor Systems, Inc., USA), ADV
(Acoustic Doppler Velocitymeter, 6.0MHzVector currentmeter, Nortek
AS, Norway) and fluorometers (C3™ Submersible Fluorometer, Turner
Designs, USA) were deployed at three sites (Table 1). In the laboratory,
the suspended sediment collected in the field was fully mixed with
water, whose turbidity was measured by fluorometers used in the
field. The suspended sediment concentration (SSC) of each mixture
was measured. The relationship between SSC values and turbidities
from indoor calibration was used to convert in situ turbidity readings
to SSC (Fig. A1).



Fig. 1. (a) Map of the Netherlands; (b) map of theWestern Scheldt Estuary, which shows the locations of the study area, Vlissingen (meteorological station), and Hansweert (water level
gauge); (c) map of the Kapellebank mudflat, which shows the observation sites, bathymetry as measured from jet skis (Shore Monitoring & Research, the Netherlands), cross- and long-
shore dimensions; (d) the cross-shore bathymetry profile with the site locations; and (e) photograph shows a visible hummock-hollow pattern from diatoms.
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Time series of the predicted andmeasuredwater levels every 10min
at the Hansweert gauge (Fig. 1b) were provided by Rijkswaterstaat
(part of the Dutch Ministry of Infrastructure and the Environment),
the Netherlands. Hourly meanwind speed, wind direction, air pressure,
and sunshine duration data at the Vlissingen meteorological station
(Fig. 1b) were obtained from the Royal Netherlands Meteorological In-
stitute (KNMI).

The surface sediment at each site was sampled as a mixture of at
least five scrapes of the uppermost 2 mm of the bed sediment at the
three observation sites on April 29. To minimize the sediment samples
being dried or wet, we took samples directly after the tidal flat was ex-
posure to the air, and each sediment sample was taken on dry area or
ripple crest if there was rippled micro-morphology. The water content
and grain size distribution of the fresh sediment samples were mea-
sured. Wet sediment samples were weighed and oven dried at a tem-
perature of 60 °C until a stable weight was reached (≥96 h). The water
content W was derived as the ratio of the weight of the water (the
Table 1
Instrumentation and sampling schemes.

Parameters Instrument Sampling scheme

Waves Wave-logger Pressure probe was 5 cm above the bed;
4096 samples at 10 Hz every 20 min.

3D velocity ADV Sampling volume (2.2 cm3) at 15 cm above the bed
April 28–May 2: 2048 samples at 8 Hz every 5 min
May 3–May 24: 720 samples at 8 Hz every 10 min.

Relative bed-levels ADV Measuring the distance between the transmitter an
Turbidity Fluorometer Probe 15 cm above the bed;

Measure every 5 min.
difference between the wet and dry sediment weights) to the dry sedi-
mentweight. The grain size distributions of the sediment samples were
analyzed using a laser diffraction particle size analyzer (Mastersizer
2000, Malvern Instruments Ltd., UK). Before the grain size measure-
ment, organic matter and carbonate were removed from the sediment
samples by HCl and H2O2. Then the samples were disaggregated by
the addition of (NaPO3)6 and subsequent ultrasonic treatment.

Chlorophyll a concentrations were measured as a proxy for the dia-
tom biomass in the bed sediment. Sediment samples were collected
from the upper 2 mm of the sediment near site A2 (approximately
70 m from site A2) on April 28. Two and three samples were collected
at points that visually appeared to have high and low diatom biomass,
respectively, and 6 samples were collected at random points. At each
point, a pooled sample consisting of ten cores with a total surface area
of 17.7 cm2 was collected (total surface area per point = 3.5 cm3). The
samples were stored on ice until being transferred to a −80 °C freezer.
The chlorophyll a concentrations were determined after freeze drying
Sites

A1

;
;

A1, A2, A3

d the sediment surface every 5 or 10 min with an accuracy of ±1 mm. A1, A2, A3
A1
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and extraction in 90% acetone by high-performance liquid chromatog-
raphy (HPLC; Wright et al., 1991).

3.2. Calculation of the bed shear stress

The total bed shear stress due to the combinedwave–current action,
τcw (Pa), was calculated with the wave–current interaction model
(Soulsby, 1997):

τcw;rms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2m þ 1

2
τ2w;whereτm ¼ τc 1þ 1:2

τw
τc þ τw

� �3:2
" #vuut ð2Þ

τcw; max ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τm þ τw cosϕcwj jð Þ2 þ τw sinϕcwj jð Þ2

q
ð3Þ

in which τw (Pa) and τc (Pa) are thewave-induced and current-induced
bed shear stresses, respectively, and ϕcw is the angle between current
and wave directions. Here we use root-mean-square value (τcw,rms)
when it is used in erosion model, because the consequence of total
bed shear stress over the wave-cycle is considered. Maximum bed
shear stress (τcw,max) is used when determining erosion threshold.

The wave-induced bed shear stress, τw, was obtained by ana-
lyzing the high-frequency pressure data measured by the wave-
logger. Variations due to air pressure were first removed. The
wave parameters (significant wave height Hs and significant
wave period Ts) were obtained using linear wave theory (Tucker
and Pitt, 2001). At the edge of the wave boundary layer, the

peak orbital excursion (Âδ) and peak orbital velocity (Ûδ) can be
expressed as (van Rijn, 1993):

Âδ ¼ Hs

2 sinh khð Þ ð4Þ

Ûδ ¼ ωÂδ ¼ πHs

Ts sinh khð Þ ð5Þ

in which k = 2π/L, L = (gT2/2π) tanh (kh) (m−1) is the wave
length, k is the wave number, h (m) is the water depth, and ω
(s−1) is the wave frequency.

The time-averaged (over a wave cycle) bed shear stress due to
waves, τw (Pa), is expressed as (van Rijn, 1993):

τw ¼ 1
4
ρw f wÛ

2
δ ð6Þ

where ρw (kg/m3) is the water density, and fw (−) is the friction coeffi-
cient, which is defined by the diagram of hydraulic regimes of oscilla-
tory flow (van Rijn, 1993, Fig. A2):

f w ¼
2 Re−0:5

w ; laminar
0:09 Re−0:2

w ; smooth turbulent
min exp −6þ 5:2r−0:19� �

;0:3
� �

; rough turbulent

8><
>: ð7Þ

where Rew ¼ ÛδÂδ

ν
(−) and r ¼ Âδ

ks
(−) are the wave Reynolds number

and relative roughness, respectively, ks is the Nikuradse roughness,
which is given by ks = 2.5d50, where d50 is the median grain size of
the bed sediment, and ν (m2/s) is the kinematic viscosity of water. Eq.
(6) applies to skin friction. Note that in our case, the laminar regime
wasmost often found in normal weather, and the smooth turbulent re-
gime was found at shallow water (h b 2 m) during storm condition.

The variance in the turbulent velocity fluctuation in the vertical di-

mension w2
t is used to infer the current-induced bed shear stress, τc,

using the following formulation:

τc ¼ Cρww2
t ð8Þ
in which the constant C is assumed to be 0.19 (Stapleton and Huntley,
1995). Because measured near-bed velocities might be affected by sur-
face wave motion in tidal areas, wave–turbulence decomposition is ap-
plied (Zhu et al., 2016). Here, the Energy Spectrum Analysis (ESA)

approach was used to obtain w2
t . The ESA approach was developed by

Soulsby and Humphery (1990) to divide the variance without separat-
ing the instantaneous time series.

The current direction and the wave direction were obtained from
the burst-mean velocities and decomposed wave orbital velocities, re-
spectively; see Zhu et al. (2016).

3.3. Empirical models to determine the erosion threshold and erosion
coefficient

Two approaches to determine the erosion threshold, which is repre-
sented by the critical bed shear stress for erosion (τe), are used in this
paper. In the first approach, the erosion threshold is determined by
the bed shear stress at the moment that the bed starts or stops
degrading (Andersen et al., 2007). Time series of the bed shear stress
and bed-level variation are estimated from the field measurements. In
this study, the sediment bed was relatively stable during calm weather,
and there was a period without bed deposition, with maximum erosion
depth of 11.4 cm, during the storm condition. We define the stable bed
level before bed degradation as the original bed surface (depth z = 0).
When a τe value is determined, the difference between the original
bed surface level and the bed level at this moment is defined as the
depth where the τe is determined. The vertical distribution of τe with
depth z is therefore obtained.

In the second approach, the critical bed shear stress for erosion is cal-
culated using the bed properties (van Rijn, 2007). The critical bed shear
stress (τe) is calculated based on the median grain size of the sediment
bed (d50):

τe ¼
cgel
cgel;s

� �
dsand
d50

� �γ

τcr; d50b62:5 μm mudð Þ

1þ pclay
	 
3

τcr ;d50≥62:5 μm sandð Þ

8>><
>>: ð9Þ

in which, cgel is the dry bulk density, cgel,s is the dry bulk density of sand
bed bymass (1722 kg/m3, assuming that porosity of the sandbed equals
to 0.35); γ is the empirical coefficient, in the range of 1–2 (1.5 for this
study); pclay is the clay fraction; τcr is the critical bed shear stress
based on a parametric Shields curve, for D∗ ≤ 4, θcr = 0.115D ∗

−0.5 and
τcr = [(ρs − ρw)gd50]θcr, with D∗ of dimensionless particle size of the
bed sediment. Flume study shows that Eq. (9) performs well when cal-
culating τe for themud bedwith rich silt (silt content is about 60% in our
study, Yao et al., 2015).

The bed level change rate is
Δη
Δt

¼ 1
ρdry

ðD−E þ AÞ, where Δη is the

bed level variation in the time period Δt, ρdry (kg/m3) is the dry density
of surficial sediment, A is advection term, andD and E are the deposition
rate and erosion rate, respectively:

E ¼ M∙ τcw;rms−τe
� �

; τcwNτe
0; τcw≤τe

�
ð10Þ

D ¼
0; τcwNτd

ωscb 1−
τcw
τd

� �
; τcw≤τd

8<
: ð11Þ

where ωs and cb are settling velocity (m/s) of suspended sediment and
suspended sediment concentration (kg/m3). Arguments have been
raised about the necessity of including a critical bed-shear stress for de-
position, τd (Dyer, 1986; Sanford and Halka, 1993; Lumborg, 2005;
Winterwerp, 2007). Especially in the review of Sanford and Halka
(1993) various arguments are used in favor and against the use of a
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critical bed shear stress for deposition. Here we adopt the option of
using τd for the following reason. Deposition is assumed to stop when
τcw exceeds a certain threshold, which is the critical shear stress for de-
position, τd. Strong eddy diffusivity, which is proportional to the shear
velocity, leads to a greater upward diffusion flux than the downward
settling flux (Maa et al., 2008). In Eq. (11), this process can be simplified
as deposition being prohibited when the bed shear stress exceeds τd. τd
is often regarded smaller than or equal to τe (Christie et al., 1999;
Lumborg, 2005). In this case, during the pure erosion stage, when τcw
N τe, E N 0 and D = 0. The bed level change rate Δη/Δt is:

Δη
Δt

¼ 1
ρdry

∙ −Eð Þ ¼ −
1

ρdry
∙M∙ τcw;rms−τe

� � ð12Þ

where E (kg/m2/s) is the erosion rate. From Eq. (12), the erosion coeffi-
cient, M, can then be determined by:

M ¼ −
Δη
Δt

∙ρdry∙
1

τcw;rms−τe
ð13Þ

where ρdry is set to 800 kg/m3. For each time step Δt = ti+1 − ti, the
depth z is defined as the difference between the bed level at ti with
the original bed level. Regression of τe and z is used to determine the
τe value at this certain depth z. τcw,rms at ti is calculated using Eq. (2).
The bed level η and its change rate Δη/Δt are obtained from ADV mea-
surements. The vertical distribution of M is then plotted from pairs of
M and z.

4. Results

4.1. Tides and waves

Fifty tides were measured during themeasurement period (Fig. 2b).
A storm event occurred from May 6 to 12. A period of strong onshore
winds is referred as a stormperiod in this paper (Fig. 2a). The difference
between themeasured and predictedwater levels indicated that the av-
erage storm surge was 0.4 m and the maximum value was 0.7 m
(Fig. 2b). Neap tides that coincided with the storm surge led to contin-
uous inundation at the lowest site A1, which had a water depth of ap-
proximately 0.5 m at low water.

The significant wave heights (Hs) at Site A1 were larger during the
storm period (average of 0.13m) than during normal weather (average
of 0.04 m) (Fig. 2d). The maximum Hs was 0.34 m on May 9. According
to the wave breaking index (Hs/h N 0.6 for breaking waves; Battjes and
Stive, 1985), the waves at the three sites were nonbreaking for the ma-
jority of the measurement period. The waves at Site A1 were on the
verge of breaking at low water during the storm period (Fig. 4).

4.2. Bed shear stresses, bed level changes and suspended sediment
concentration

In calmweather, the average τcw,rms values increased from 0.08 Pa at
Site A3 to 0.18 Pa at Site A1. The τcw,rms values at Sites A2 and A3 were
less than the estimated τe from sediment characteristics and Eq. (9) of
the surface sediment (Table 2), which implies minor erosion (Fig. 2h).
At Site A1, the bed shear stress was slightly larger than computed τe
based on Eq. (9). The impact of the diatoms is however neglected in
this estimation. Because of the presence of the diatoms, which played
a role in stabilizing the bed, no obvious bed degradation occurred at
Site A1 during this period (see the discussion in Section 5.3).

The bed level variations differed significantly between Site A1
and Site A3. During the storm period, bed degradation was most pro-
nounced at Site A1 (Fig. 2h), where the bed level degraded by 12 cm.
Site A1 showed a stepwise variation of the bed level. Bed degradation
occurred during very shallow water, which took approximately 20%
of the tidal cycle. No significant variations were found for the other
80%, when the water depth was relatively high (Fig. 3a). Much less
degradation took place at Sites A2 and A3. Bed shear stresses at
sites A2 and A3 were not measured during the storm period due to
battery shortage.

Themeasured near-bed SSC (cb) at Site A1 varied from 0.01 kg/m3 to
5.9 kg/m3 with an average value of 0.5 kg/m3 (Fig. 2f). Near-bed SSC
peaks during calm high slack water denote deposition, while peaks at
low water during the storm is related to erosion (also see Fig. 5).

4.3. Diatom biomass

A visible diatom biofilm covered the mudflat before the storm. Near
Site A2, the average chlorophyll a concentration of the surface 2-mm
sediment layer was 180 mg/m2, which was similar to the value of the
reference sample with a high diatom biomass (208 mg/m2; Fig. 6). Un-
fortunately, no measurements of diatom biomass were made after the
storm.

4.4. Erosion thresholds and erosion coefficient

Time series of the bed level and maximum bed shear stress τcw,max

for the storm period on May 11 (T26 and T27) are shown in Fig. 7a
and b, respectively. The deposition rate during each shallow water
stage, when the bed starts to degrade, was negligible because τcw,rms be-
came larger than the critical shear stress for erosion, τe, at this depth.
After this degradation period, the bed stopped degrading and returned
to a relatively stable state when τcw,rms decreased to a certain threshold.
These two thresholds, at which the system began to change its state
from relatively stable to an erosional state and from the erosional
state to a relatively stable state, can approximately represent the τe
values of the sediment at the bed levels (Fig. 7; Andersen et al., 2007).
It means that in situ measurements provide the possibility to measure
τe very frequently. This approach is based on the assumption that depo-
sition is negligible during stormyweather. Each deeper layer of the bed
sediments exposed to the flow, as new surface layer, is better
consolidated.

The τe values increased from 0.10 Pa at the sediment surface to
1.13 Pa at a depth of 0.12 m (Fig. 8a). The surface sediment was often
freshly deposited mud. The water content of the surface sediment de-
creased from the lowest site, Site A1, to the highest site, Site A3. Consid-
ering the cohesive force reflected by the grain size distribution, the τe
values has little difference from A1 to A3 (Table 2). This is probably be-
cause the Kapellebank mudflat is very short and flat, leading to a cross-
shore homogeneous distribution of sediment properties.

Bed degradation of only 3 mm occurred during the ebb stage of the
tidal cycle on May 22 (T48), when the wind turned onshore with a
speed of 8.4 m/s (Figs. 2a and 7d). The erosion threshold τe was
0.13 Pa, which represents freshly deposited sediment, and was close
to the value obtained by Eq. (9). The bed level changes at Sites A2 and
A3 were low during tidal inundations, so determining the erosion
threshold of the sediment at these sites is difficult. This condition is
identical to the condition at Site A1 before the calm conditions.

The application of Eq. (13) with the results of A1 shows that the M
value within the uppermost 12 cm of the sediment layers varied from
0.03 × 10−3 to 7.9 × 10−3 s/m with an average value of 1.9
× 10−3 s/m. There was no obvious trend in M in the uppermost 12 cm
of the sediment bed (Fig. 9). As no significant erosion events took
place for the higher parts of the flat (A2 and A3), no value for M could
be obtained for these locations.

5. Discussion

5.1. Sensitivity of the mud bed to erosion

Studies of morphological changes on an open tidal mudflat showed
that the distribution of erosion and accretion zones depends on the



Table 2
Calculated critical shear stress for erosion (τe) of surface sediment along the cross-shore
profile.

Site location Elevation d50 W Mud content τe,cal

(m NAP) (μm) (%) (%) (Pa)

A1 −1.25 20.2 148 83 0.086
A2 −0.98 20.4 130 84 0.093
A3 −0.25 30.6 106 76 0.090
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tidal range and that lower flats are often eroded during storm
events (Fan et al., 2006). Our study shows a similar pattern: signif-
icant bed erosion occurred during wind events around the lower
flat (Site A1), whereas the middle flat (Sites A2 and A3) experi-
enced much smaller variations in the bed level (Fig. 2h). Studies
have demonstrated that these erosion zones coincide with high-
wave-energy or wave-breaking zones because near-breaking or
breaking waves generate turbulent flows that stir up substantial
bed material (Shi and Chen, 1996; Fan et al., 2006; de Vries
et al., 2008).
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Various high-temporal-resolution bed-level measurements have
shown that significant bed erosion often occurs under very shallow con-
ditions (i.e., water depths b0.25–0.7 m; O'Brien et al., 2000; Andersen
Fig. 4. Ratio of significant wave height over water depth at Site A1.
et al., 2006; Shi et al., 2015). At Site A1, thewaves had a high probability
of breaking over 6.4% in the storm period,mostly in shallowwaters. The
ratio of the significant wave height to the water depth exceeded 0.60
and sometimes surpassed the threshold value for wave breaking of
0.73 (Battjes and Stive, 1985). Consequently, significant erosion oc-
curred during very shallow stages (Fig. 3).

In summary, significant bed erosion tended to take place at Site A1
rather than in the upper area for the following reasons: (1) the bed
was exposed to large hydrodynamic forces caused by wind/storm
events; and (2) the duration of the very shallow water stage is long
enough that large bed shear stresses continuously affect the bottom
and can even lead to wave breaking. Combining the two aspects, the
bed at the elevation just below low tide is more dynamic. Note that
this location of the bed affected by strong hydrodynamic forces during
shallow water stage also shifts seaward or landward near the mean
low water level, because the low tide varies with spring-neap cycle.
However, erosion during very shallow water is difficult to detect with
field measurements. Acoustic instruments are generally applied facing
downward to obtain the bed position using ultrasonic echo-ranging
(Jestin et al., 1998; O'Brien et al., 2000; Saulter et al., 2003; Andersen
et al., 2006; Zhu et al., 2014). These devices cannotmakemeasurements
when the water surface drops below the echo transmitter (i.e., water
depth b 0.3–0.45 m). Erosion process under very shallow conditions is
also often ignored by numerical models. There is a threshold depth
belowwhich themodel regards the bed as dry and stops the simulation.
This threshold depends on the tidal range and the simulation time step
and is often set to centimeters to tens of centimeters (Deltares, 2010).
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5.2. Effect of the flow pattern on sediment transport during a storm

Bed erosion has been considered to be increased by the wave-
induced bed shear stress, which is enhanced by storms (Janssen-
Stelder, 2000; Yang et al., 2003; Fan et al., 2006; Dalyander et al.,
2013). In recent years, the influence of wind-driven currents and tur-
bulence has been emphasized (Banerjee et al., 2015; Su et al., 2015).
In this study, τw increased significantly during the shallow waters of
the storm neap tides. However, τw surpassed τe by a limited amount
and was sometimes even smaller than τe. Fig. 3b shows that τcw was
dominated by the current-induced component (τc) during signifi-
cant erosion periods because strong flows occurred during the low
tides (Figs. 3c and 5b). As estimated in de Vet et al. (2018), the
wind-induced flow velocity can reach a value of the wind speed di-
vided by ~40. The storm wind-induced turbulence generated at the
water surface may also enhance τc and transfer it to the bottom
layer (Su et al., 2015). Note that τc was obtained using the bulk tur-

bulent strength w2
t , so the turbulence from bottom friction and sur-

face momentum are not distinguished.
The tidal wave was nearly standing in the study area because low

flow velocities occurred near the high and low water levels (Fig. 5).
However, the velocity series during the storm neap tides in both the
long-shore and cross-shore directions exhibited asymmetry: the ebb
flow turned to the east when the ebb peak began, and the velocity
was high; meanwhile, strong offshore flow occurred during the low
tides (Fig. 5b). Maan et al. (2018) simulated the flow velocities of this
case study. The numerical model simulations for the two neap tide pe-
riods with andwithout the effect of storms (Fig. 5) show that the veloc-
ity asymmetry was caused by the wind rather than the spring neap
cycle. This pattern was absent in the simulated velocities of the calm
neap tides (Fig. 5d). The modified flow in the shallow water stages
was different from the normal wind-driven flow in the open sea; it
was a result of the interaction between the wind and the tidal flat-
channel topography. The occurrence of this modified flow pattern at
the flat-channel interface further increased the instability of the bed in
this area (Fig. 11).

The higher flow velocities during the shallow water periods
also played an important role in the cross-shore sediment transport.
In calm weather, SSC peaks appeared during the flood peak stage, so
the net cross-shore sediment fluxes were onshore during calm



Fig. 8. (a) Vertical distribution of abiotic τe. The schematic diagrams of τe's vertical distribution are redrawn after (b) Whitehouse et al. (2000; Sketch 1) and (c)Winterwerp et al. (2012;
Sketch 2). The δe in Sketch 2 is the erodible depth within which the sediment is easily eroded in the form of surface erosion.

Fig. 7. Examples of determining the critical shear stress for erosion (τe) and deposition (τd) from the ADV-measured bed level variability and maximum bed shear stress (τcw,max) under
storm conditions (a, b) and calm conditions (d, e) at Site A1. Each solid line is the trend line of the observations. (c) and (f) are time series of near-bed SSC of each tidal cycle.
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tidal cycles (Fig. 10). In stormy weather, the SSC peaks during the
low tides were much larger than those during high water periods
(Fig. 5a). Increased flows enhanced the bed shear stress, which
eroded substantial amounts of sediment and carried it away, leading
to net offshore sediment transport (Fig. 10). This net sediment trans-
port model is consistent with the results from open mudflats
(Bassoullet et al., 2000; Yang et al., 2003; Fan et al., 2006) and agrees
with the theory that sediment moves from high-energy areas to low-
energy areas along the energy gradient (Yang et al., 2003; Friedrichs,
2011).
Fig. 10. (a) Water depth (h), and (b) net sediment transport fluxes per unit width at 15 cm ab
onshore winds occurred, while net onshore sediment transport occurred in calm weather und
5.3. Abiotic and biotic effects on τe of surface sediment

Currently, determinations of the τe value of surface mud, which is
freshly deposited and has a high water content, are based on empirical
formulae that incorporate the water content (Taki, 2001), bulk density
(Mehta, 1988; Mitchener and Torfs, 1996), or dry density (Delo and
Ockenden, 1992;Whitehouse, 2000). These three sediment characteris-
tics are transferable. Recently, mud or silt fraction and cohesion have
been taken into account (van Ledden, 2003; van Rijn, 2007). When
using Eq. (9), the τe of the surface sediment at Site A1 was estimated
to be 0.09 Pa. This value matches that obtained by reading the τcw and
η time series for sediment at zb = 2.5 mm in the erosion stage and the
freshly deposited mud in the recovery stage. Here, zb is the depth be-
neath the sediment surface and is positive downward.

In addition, a visible diatom biofilm was present on the mudflat,
whose effect was not considered in the empirical formulae. Andersen
et al. (2010) found that τe increased linearly with the EPS content. The
chlorophyll a concentration is also a good proxy for the diatom biomass
on bare mudflats (Riethmüller et al., 2000; Kazemipour et al., 2012).
Riethmüller et al. (2000) found a high correlation coefficient between
τe and the chlorophyll a concentration (b100 mg/m2). In this study,
the calculated mean τcw,rms and the mean value of uppermost 10% τcw,

rms of the surface sediment in the pre-storm stage were 0.17 Pa and
0.46 Pa, respectively. These values are higher than the abiotic τe value,
which was calculated to be 0.09 Pa using Eq. (9). Bed erosion was ex-
pected to occur, but the bed level measurements showed no significant
decrease (Fig. 2h). Considering the surface thin layer of sediment has lit-
tle chance to consolidate as it suffers from tides andwaves, these results
suggest that τe increased to at least 0.46 Pa due to the existence of a di-
atom biofilm. On a mudflat in the East Frisian Wadden Sea, τe reached
1.2 Pa when the chlorophyll a concentration was 45 mg/m2 (Andersen
et al., 2010). So, we suggest that the diatom distribution should be in-
cluded in models to improve the understanding of the temporal vari-
ability in sedimentation (Fig. 11), whose magnitude might be
sufficient to affect themud balance of the estuary (Herman et al., 2001).

5.4. Vertical distribution of τe

The value of τe increases with depth beneath the sediment
surface because deeper sediment layers are better consolidated
(e.g., higher bulk density; Townsend and McVay, 1990; Gomez
ove the (original) bed at Site A1. Net offshore sediment transport occurred when strong
er spring tides.



Fig. 11. Schematic diagram of the bed stability distribution of a tidal mudflat in both the
cross-shore and vertical dimensions. The bed stability decreases from the higher to
lower tidal flat as bed strength (τe) decreases and the hydrodynamics forces increases.
The bed stability is further weakened at the interface between the intertidal flat and the
channel because wave-breaking and complex flow structures have a high probability of
occurring in this area. Vertically, τe increases downwards, and increases at a smaller
gradient towards the deeper bed from a certain depth. The bed stability distribution in
both dimensions is changed by the diatoms, because they enhance τe of the surface
sediment.
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and Amos, 2005; Zhou et al., 2016). Mehta and Partheniades (1982)
described that bed degradation in a stratified bed stops when the
bed shear stress equals the critical shear stress. The vertical
distribution of τe explains this depth-limited erosion (also called
supply-limited erosion). However, how τe increases with depth has
been less commonly reported than τe estimations for surface
sediment.

In situ measurements have shown the τe distribution of undis-
turbed sediment beds. In the flume experiment by Mehta and
Partheniades (1982), a bed deposited from suspension under a
small shear stress was similar to a natural sediment bed. The varia-
tion of τe with zb showed a tilted-S distribution (Fig. 8c) within
1–2 cm. After consolidation for 144 h, τe reached 0.6 Pa at 1.4 cm
below the sediment surface. This tilted-S distribution and length
scale were later schematized by Mehta and Partheniades (1982)
and Winterwerp et al. (2012). Another schematic τe distribution
showed a linear increase with zb (Delo and Ockenden, 1992)
(Fig. 8b). Statistical analysis of our data shows that τe and zb have a
linear relationship with the correlation coefficient of 0.78 (Fig. 8a).
However, τe is expected to become constant in the substrate layer
rather than increase to an infinite depth. Therefore, an S-
distribution for τe (Fig. 8c), which was proposed by Winterwerp
et al. (2012), is suggested. This implies a finite value for the deeper
layer. Note that the length scale of τe vertical variability could de-
pend on the dynamic of local bed. The thicker the active layer, the
deeper where τe is expected to become constant.
The sediment beds in some laboratory flume studies were similar
to but still differed from natural undisturbed sediment beds. Instead,
an in situ benthic annular flume has been used to study the resus-
pension characteristics (Amos et al., 1992; Thompson et al., 2011).
They generated hydrodynamic forces within the flume, whereas
this study took advantage of natural tide and wave forces. In addi-
tion, some of the aforementioned studies were restricted to the τe
distribution in the uppermost centimeters, whereas this study ex-
tended this range to 12 cm (Fig. 8a). However, Fig. 8a shows that τe
has an increasing trend at zb = 12 cm, which indicates that the
substrate's better consolidated layer, where τe is expected to ap-
proach a constant, has not yet been reached. In addition, scattered
values of τe in Fig. 8a are found at the depth where the bed level
has a clear inflection from a stable status to rapid degradation
(Figs. 3a, b, 7a and b). This bed-level variation pattern sometimes
does not occur naturally. For example, continuous bed degradation
has been found throughout the tidal submergence during strong
wind conditions (Zhu et al., 2014), or there may be no obvious vari-
ation in the bed-level changes, such as at sites A2 and A3 in this
study. In this case, flume studies, which are safe and controllable,
are sometimes better than in situ measurements.

5.5. Vertical distribution of M

The M value of mud beds is often considered to be constant but
actually varies by orders of magnitude (Table 3). This study used in
situ measurement datasets to deduce the M values, according to Eq.
(13), of an undisturbed sediment bed. The M values for the surficial
sediments are consistent with those in the literature in terms of
their order of magnitude (Table 3). However, comparing the vertical
distribution of M values is difficult because previous studies only
showed the results within the uppermost 1–2 cm. Our study ex-
tended the vertical M distribution to the uppermost 12 cm, which
showed no significant variation in M with zb in sediment layers
that could be eroded under storm conditions. This means that in
the erosion equation E=M(τcw − τe) for τcw N τe,M can be regarded
as a constant in the vertical dimension, which is described by most
current erosion models.

Partheniades' equation is currently the most commonly used equa-
tion in the erosion modules of morphodynamic models, likely because
of its simplicity. Eq. (1) shows that there are two forms of the erosion
equation, in which two erosion parameters, M (or M′) and τe, need to
be specified. Our finding of a constant vertical M distribution suggests
that E = M(τcw − τe) for τcw N τe is more applicable. This means that
in a given area, only one varying erosion parameter, τe, must be speci-

fied, whereas in E ¼ M0ðτcw
τe

−1Þ (for τcw N τe), both M′ = M·τe and τe

are varying parameters that must be individually treated.

6. Conclusions

The erosion potential (i.e., bed stability) of a mudflat is essential to
the prediction of morphological changes and sediment budgets. In this
paper, the erodibilities of an undisturbed semi-enclosed mudflat in
both the cross-shore and vertical dimensions were determined using
in situ measurements. The bed stability decreases in the offshore direc-
tion as τe decreases, and the hydrodynamic forces increase from the
higher to lower tidal flat. Because wave-breaking and complex flow
structures have a high probability of occurring at the interface between
the intertidal flat and the channel, bed stability is significantly weak-
ened in this area.

This study shows for thefirst time bymeans of in situmeasurements
that the vertical length scales of the variations in τe and M of an undis-
turbed cohesive sediment bed have beenmeasured towards a relatively
well-consolidated layer. This in situ method provides a possibility to
measure τe very frequently, and for different layers of bed sediments.



Table 3
Comparison of bed sediment characteristics and erosion parameters— critical shear stress (τe) and erosion coefficient (M)— of themuds in the selected literatures and the present study.

Sample remarks d50 ρb Pmud τe M M′ = M·τe Reference

(um) (kg/m3) (%) (Pa) (10−3 s/m) (10−4 kg/m2/s)

Kaolinite in tap water 1 1093–1218 100 – – 0.13 Mehta and Partheniades (1982)
Kaolinite in salt water 1 1116–1239 100 – – 0.07
HR Wallingford – Grangemouth – 1370 89–90 – 0.5–1.4 – Whitehouse et al. (2000)
HR Wallingford – Harwich – 1250 88–95 – 0.7 –
HR Wallingford – Hong Kong – – 65–80 – 0.6–1.5 –
HR Wallingford – Ipswich – 1320 – – 0.9–3.0 –
HR Wallingford – Kelang – – 65–80 – 0.2–0.9 –
HR Wallingford – Kingsnorth – 1375 64 – 0.7 –
HR Wallingford – Medway – 1220 80 – 0.7 –
HR Wallingford – Mersey Eastham – 1140 80 – 0.5 –
HR Wallingford – Poole – 1500 80–85 – 0.7–1.4 –
HR Wallingford – Tees Seal Sands – 1550 75 – 0.2–1.4 –
HR Wallingford – Tees dredged – 1430 75 – 0.5–1.8 –
Jacobs et al. (2011) test – 1784 16 0.4 9 36 van Prooijen and Winterwerp (2010)
Amos et al. (1992) test – 1500 80 2.35 3.4 80
Ketelmeer – measured 7.3 1167–1626 – 0.2–2.1 0.0006–4.2 1.9–8.4 Winterwerp et al. (2012)
Ijmuiden – measured 2.5 1127–1610 – 1.0–1.3 0.0009–1.9 12–19
Kembs – measured 21 1512 – 2.4 1.3 31
Ketelmeer – computed 7.3 1167–1626 – 0.2–2.1 0.004–0.52 1.0–2.8
Ijmuiden – computed 2.5 1127–1610 – 1.0–1.3 0.003–0.46 2.9–4.6
Kembs – computed 21 1512 – 2.4 0.17 4.1
Kapellebank – A1 20 1492 83 0.1–0.8 0.03–9.1 0.09–29 This paper
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Without diatoms, τe increased at a smaller gradient towards the deeper
bed from a depth of 1.5 cm, whereas M can be regarded as being con-
stant with depth in the linear erosion equation E = M(τcw − τe) for
τcw N τe.

There is a strong indication that the diatoms increase the critical bed
shear stress for erosion of the surface sediment on intertidal flats by sev-
eral times. They change the vertical distribution of the bed stability by
enhancing τe of the surface sediment.

Based on our results, the following model improvements for
predicting morphological changes of tidal mudflats are suggested:
(1) very shallow conditions should be better simulated by not
omitting these periods; (2) the vertical distribution of τe should
be considered; erosion rates can be overestimated, especially dur-
ing extreme events, because exposure of the deeper well-
consolidated layer likely occurs; and (3) an appropriate descrip-
tion of the effect of diatoms should be considered as part of the
bottom boundary condition.
Fig. A1. Relation between fluorometer measured turbidity (t) and suspended sediment conc
increased exponentially with t in high turbidity condition (t ≥ 2000 NTU).
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