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Mangroves play a crucial role in coastal protection and biodiversity but face escalating threats from anthropo-
genic pressures and climate-driven disturbances. Long-term monitoring remains challenging due to mangrove
fragmentation and limited high-resolution historical data. This study presents a deep learning-based approach
for mangrove identification, leveraging cloud-free Sentinel-2 MSI imagery (10 m resolution) and Mask R-CNN to
map and analyze mangrove dynamics on Lantau Island, Hong Kong, from 2016 to 2024. The model integrates

surface reflectance bands, spectral indices (EVI, LSWI, MVI), and elevation data, achieving high accuracy (mean
absolute percentage error: 6.91%; root mean square error: 0.04 x 10* ha). Multi-source validation demonstrated
its strong generalization capacity across global mangrove ecosystems. Spatiotemporal analysis revealed diver-
gent trends in two key mangrove stands. In Shui Hau, mangrove area declined continuously from 0.77 ha in 2016
to 0.39 ha in 2024, accompanied by shoreline erosion at a rate of 3.07 m/yr. This loss was associated with
reduced suspended sediment concentration and persistent high wave energy. In contrast, Tung Chung’s
mangrove area expanded from 3.28 ha to 3.59 ha, with shoreline accretion at 0.85 m/yr, supported by moderate
wave dynamics and higher sediment availability. These findings underscore the value of 10 m resolution
Sentinel-2 MSI imagery for historical mangrove mapping, providing critical insights for targeted conservation

and management strategies.

1. Introduction

Mangroves constitute a distinctive assemblage of salt-tolerant vege-
tation primarily occupying the intertidal zones of tropical and sub-
tropical coastlines, forming a critical transition interface between
terrestrial and marine ecosystems (Donato et al., 2011; Giri et al., 2011).
Globally, mangrove forests span approximately 147,000 km? of coastal
areas (Leal and Spalding, 2022), accounting for less than 1 % of the
world’s tropical forest cover (Giri et al., 2011; Jennerjahn and Ittekkot,
2002). Despite their relatively limited spatial extent, mangroves play an
indispensable role as significant global carbon sinks, contributing sub-
stantially to carbon sequestration and thus climate change mitigation
(Duarte et al., 2013; Richards et al., 2020). Nevertheless, these vital
ecosystems are increasingly threatened by rising sea levels and

* Corresponding authors.

intensifying anthropogenic pressures (Blankespoor et al., 2017; Gold-
berg et al., 2020; Monika and Yadav, 2022; Ward et al., 2016). During
the latter half of the 20th century, mangrove areas declined at an
alarming rate of 1-2 % annually, largely driven by rapid urbanization,
industrial development, and the escalating impacts of sea-level rise
(Friess et al., 2019; Woodroffe et al., 2016). Therefore, precise mapping
and monitoring of mangrove distribution are essential for effective
conservation, ecological restoration, and coastal risk assessment.

Some studies have focused on mangrove changes in river deltas and
estuaries, whereas mangrove dynamics in marine embayment have
received comparatively less attention. In Asia, in certain areas of Indo-
nesia's Subang Regency, mangrove area declined by 83 % between 2017
and 2022 due to aquaculture expansion, with the remaining 17 % of
losses attributed to other human activities and natural hazards
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(Dzulfigar et al., 2024). In the Maldives, widespread mangrove dieback
occurred in 2020 due to salinity stress from high sea levels and an
extreme positive Indian Ocean Dipole event (Carruthers et al., 2024). In
contrast, the Beilun Estuary exhibited an overall 11.2 % increase in
mangrove area from 1986 to 2022, with localized losses on the landward
side offset by seaward expansion behind barrier islands (Long et al.,
2025). In Africa, the Niger Delta lost 2536 km? of mangroves over the
same period, with oil spills accounting for 54.27 % of the losses and
urban expansion accelerating landward retreat at 13.58 m/yr (Wang
et al., 2025). Ghana's mangrove area declined by 15.4 % between 2015
and 2024, mainly due to urban expansion, indiscriminate waste
disposal, wildfires, and uncontrolled sand and salt mining (Ofori et al.,
2025). In North America, Florida's mangroves declined by 547.3 km?
from 1986 to 2022, mainly due to major storms, while sea-level rise
played a minimal role (Liang et al., 2025). In South America, coastal
Guyana recorded a net mangrove gain of 0.09 km? from 2013 to 2022,
primarily driven by restoration initiatives (Hamer et al., 2024). Oce-
ania's Fly River Delta lost 33.83 % of its mangroves from 1988 to 2023,
with 54.71 % of coastal losses attributed to wave action and human
activity, despite local seaward gains (Wu et al., 2025). These divergent
patterns underscore the complexity of mangrove dynamics, shaped by
interactions among sediment supply, wave energy, land use, and
extreme weather events (Hagger et al., 2022).

The understanding of the spatial-temporal characteristics of
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mangrove ecosystems plays a critical role in determining appropriate
protection measures or restoration plans (Ellison et al., 2020; Jia et al.,
2014; Zhang et al., 2023). However, accurately mapping the spatial
distribution of mangroves and continuously monitoring their temporal
dynamics are fundamental prerequisites for designing effective conser-
vation and restoration strategies (Ellison et al., 2020; Jia et al., 2014;
Zhang et al.,, 2023). Previous studies have employed a range of
approaches—including field surveys and remote sensing—to quantify
mangrove extent and assess ecological changes over time (Robertson
et al.,, 1991). Yet, field-based measurements are often constrained by
difficult terrain, limited accessibility, and the inability to capture
regional-scale variations, particularly in complex intertidal environ-
ments (Giri, 2016). Deep learning methods help overcome key chal-
lenges in mangrove interpretation by improving the discrimination of
spectrally similar vegetation, enhancing boundary delineation in frag-
mented coastal landscapes, and enabling more reliable detection of
subtle ecological changes that traditional remote sensing approaches
may overlook (Anees et al., 2025; Kirui et al., 2013; Mehmood et al.,
2025). Recently, there has been rapid development in using
deep-learning-based algorithms for mangrove mapping based on coastal
and wetland images. Xu et al. (2023) combined time series Landsat data
and the MSNet semantic segmentation algorithm to obtain spatiotem-
poral change information about mangrove coverages. Zhang et al.
(2025) used high-resolution optical image data along with the DeepLab

Fig. 1. A: Location of the Lantau Island. B: Tung Chung. C: Shui Hau.
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Fig. 2. Workflow employed in the study.

V3+ instance segmentation method to detect the mangrove area accu-
rately. One of the advantages of the deep learning approach is that it can
automatically extract hierarchical features from raw inputs without any
human intervention, which reduces the requirement of hand-crafted
features and enables fast and efficient model training (Zhao et al.,
2024). But semantic segmentation networks usually suffer low boundary
accuracy than instance segmentation ones (Yin et al., 2022). Therefore,
we choose the instance segmentation framework as our network struc-
ture to achieve accurate detection results of mangroves in this paper.

Mask R-CNN is simple but effective end-to-end architecture that can
simultaneously detect instances in images and generate high quality
mask prediction maps for all detected instances (He et al., 2017), which
makes it ideal for many remote sensing problems such as those dealing
with complex land covers. Recently, Mask R-CNN has become popular
for instance level object detection and segmentation on high resolution
satellite images because it can joint optimize object localization and
semantic boundaries (Han et al., 2022; Liu et al., 2022). Also, it shows
promising results when applied on VHR dataset composed by VNIR
bands with an accuracy higher than 91.4 % and an f-score greater than
0.89 in the mangrove canopy segmentation task (Lassalle and De Souza
Filho, 2022). Moreover, the mangrove communities on Lantau Island are
relatively sparse and often occur in small (Zhang et al., 2025). Mask
R-CNN treats each mangrove patch as an individual instance, enabling
the model to preserve fine boundary details, discriminate between
closely adjacent patches, and prevent the merging of spectrally similar
yet spatially distinct vegetation groups (Carvalho et al., 2020; Yin et al.,
2022). All these reasons motivate us to choose Mask R-CNN for our
mangrove delineation problem.

The reliable spatiotemporal description of mangroves is an impor-
tant prerequisite for formulating appropriate management and conser-
vation measures against environmental stresses (Wu et al., 2025). The
launch of Sentinel-2 in 2015 provided us with free-of-charge, high
spatial resolution(10 m), multi-spectral imaging every five days at
global scale, which makes it suitable for investigating the dynamic
change of small areas such as mangrove ecosystems (Phiri et al., 2020).
Therefore, we use time series of Sentinel-2 Multi-Spectral Instrument
(MSI) data combined with a deep learning-based instance segmentation
network Mask Region Convolutional Neural Network (MaskR-CNN) to

study the dynamics of mangroves on Lantau Island, Hong Kong from
2016 to 2024.

On Lantau Island, the sediment supply is controlled mainly by local
terrestrial input and nearshore hydrodynamics (Xiong et al., 2018).
Sediment fluxes control both sediment transport and deposition pro-
cesses, which affect mangroves’ distributions (Fanous et al., 2023;
Krauss et al., 2014). In areas of relatively weak energy along coastlines,
fine-grained sediments may be deposited on the intertidal zone or es-
tuaries resulting from the accumulation of sediment during flooding
cycles, causing elevating of substrate surface level for the expansion of
mangroves towards seawards (Walsh and Ridd, 2008; Wolanski et al.,
2006). However, in areas of higher energy conditions, waves and tur-
bulence cause erosion that inhibits seedlings establishment and prevents
the colonization of mangroves (Mbense et al., 2016; Raw et al., 2019).
Apart from hydrodynamic factors, sea-level rise has emerged as a key
driver of landward retreat, particularly where vertical accretion fails to
keep pace with rising water levels (Fanous et al., 2023; Gilman et al.,
2007). Moreover, extreme weather events such as typhoons have caused
severe damage to mangrove canopies (Kauffman and Cole, 2010; Paling
et al., 2008).

Thereafter, the analysis focuses on two representative mangrove
stands—Shui Hau and Tung Chung—and aims to (1) assess the perfor-
mance of the Mask R-CNN model in mangrove mapping through quan-
titative accuracy metrics; (2) quantify spatiotemporal variations in
mangrove extent in Shui Hau and Tung Chung from 2016 to 2024; (3)
identify the primary environmental factors driving mangrove expansion
and retreat in each region; and (4) compare the performance of instance
segmentation (Mask R-CNN) with semantic segmentation models in
delineating mangrove boundaries. Through this work, we seek to
enhance understanding of small-scale mangrove dynamics and support
the development of targeted conservation strategies, while also
providing insights into the broader applicability of deep learning models
for biophysical mapping in dynamic coastal systems.
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Table 1

Summary of datasets used in this study.
Dataset Source Time period
Sentinel-2 MSI GEE 2016-2024
ESA WorldCover v2.0 GEE 2021
Copernicus DEM GLO-30 GEE 2010-2015
Landsat 8 OLI USGS 2016-2024
ECMWF wave data ECMWF 2016-2024
Sea level data (Shek Pik) Hong Kong Observatory 1998-2024
Google earth Imagery Google earth 2021
Global mangrove watch Zenodo 1996-2020

2. Materials and methods
2.1. Study area

Situated in southeastern China at the mouth of the Pearl River Delta,
Hong Kong is a key component of the Greater Bay Area and hosts
approximately 60 mangrove stands across six districts, including Lantau
Island (Zhang et al., 2025). The study area focuses on Shui Hau and Tung
Chung, two mangrove stands located on Lantau Island, the largest island
in Hong Kong (Fig. 1). Lantau Island's coastal topography, characterized
by a mix of mountainous terrain and flat intertidal zones, creates unique
conditions for mangrove ecosystems. Both Shui Hau and Tung Chung are
situated along Hong Kong’s western coastline and are subject to varying
degrees of influence from the Pearl River Estuary. Shui Hau lies within a
relatively enclosed embayment on southern Lantau Island, where hy-
drodynamic exchange is weak (Fig. 1), whereas Tung Chung is located
adjacent to the airport and experiences more complex tidal and hydro-
dynamic conditions (Vorsatz et al., 2023; Wang et al., 2023). Despite
hosting multiple mangrove species—including Kandelia candel, Aegi-
ceras corniculatum, Avicennia marina, Bruguiera gymnorrhiza, Excoe-
caria agallocha, and Acanthus ilicifolius—their mangrove patches
remain small, fragmented, and characterized by simple community
structures. Such ecological attributes have long been overlooked in
traditional mangrove studies, which typically focus on larger and
better-conserved stands (Tam et al., 1997).

2.2. Materials

This study utilized multiple remote sensing and auxiliary datasets,
each serving different analytical purposes throughout the model
training, validation, and mangrove dynamics assessment workflow
(Fig. 2). A summary of all datasets is presented in Table 1. First, cloud-
free Sentinel-2 MSI imagery (2021) was downloaded from Google Earth
Engine (GEE) and used as the primary input for training the mangrove
identification model (code:https://github.com/CousinRock/Download
-S2-for-mangrovedetection.git). The mangrove label data were derived
from the 2021 ESA WorldCover v2.0 product (ESA_WorldCover v200).
To account for terrain effects on mangrove distribution, the Copernicus
DEM GLO-30 dataset was used to extract elevation information
(Copernicus DEM GLO-30). To ensure label reliability, all training
samples were visually inspected using 2021 Sentinel-2 imagery and
high-resolution Google Earth imagery, and areas showing obvious in-
consistencies were manually removed. In addition, the Global Mangrove
Watch (GMW) dataset (1996-2020) was consulted as a long-term spatial
reference to verify the stability and plausibility of mangrove distribution
patterns (Bunting et al., 2022). For suspended sediment concentration
(SSC) estimation, all available cloud-free Level-1 Landsat 8 OLI images
over Lantau Island (2016-2024) were acquired from the USGS Earth
Explorer platform (https://earthexplorer.usgs.gov/). Hydrodynamic
and tidal conditions were characterized using ECMWF wave products
(mean wave direction and significant wave height)(https://cds.climate.
copernicus.eu) and sea level records from the Hong Kong Observatory
(https://www.hko.gov.hk). In addition, three spectral indi-
ces—Enhanced Vegetation Index (EVI), Land Surface Water Index

Trees, Forests and People 23 (2026) 101146

(LSWI), and Mangrove Vegetation Index (MVI)—were calculated to
enhance the spectral separability between mangrove and non-mangrove
features. The formulas for calculating the three spectral indices are as
follows:

NIR — RED

EVI = 2. 1
v > NIR + 6RED — 7.5BLUE + 1 M
NIR — SWIR1
LSWl= ——— 2
NIR + SWIR1 2
NIR — EEN
MVI = & 3)

SWIR1 — GREEN

where RED, GREEN, BLUE, NIR, and SWIR1 respectively represent the
pixel values of the red, green, blue, near-infrared, and short-wave
infrared bands.

2.3. Methods
2.3.1. Mangrove identification model training

2.3.1.1. Input data preparation. The mangrove identification model
(MIM) was established by adapting the Mask Region-based Convolu-
tional Neural Network (Mask R-CNN), an instance segmentation
framework that extends Faster R-CNN by integrating a parallel mask
prediction branch for pixel-level segmentation alongside object detec-
tion (Wang and He, 2022). Compared with semantic segmentation
networks such as FCN, Mask R-CNN achieves higher boundary precision
through the RolAlign operation (Fig. 2), which eliminates the spatial
quantization errors of traditional RolPool and enables precise
pixel-to-pixel alignment between input features and predicted masks.
This operation significantly enhances localization accuracy, improving
mask performance by 10-50 % under stricter metrics (He et al., 2017),
and thus provides a clear advantage in detecting fine and irregular
boundaries. In the context of mangrove ecosystems, where vegetation
often occurs in fragmented, patchy structures interspersed with water
and mudflats, such fine boundary discrimination becomes crucial (Wu
etal., 2025; Xiong et al., 2024). Instance segmentation models like Mask
R-CNN have demonstrated strong performance in these heterogeneous
environments—Lassalle & De Souza Filho (2022) successfully applied
Mask R-CNN to delineate mangrove canopy gaps with high accuracy (F1
> 0.89)—indicating its robustness in distinguishing discrete mangrove
patches and their boundaries within complex coastal mosaics. This ar-
chitecture is well-suited for remote sensing applications, as it supports
multi-channel inputs and large-scale geospatial analysis (Carvalho et al.,
2020). To streamline geospatial data processing, the study employed
GeoAl, an open-source Python package designed to bridge Al and geo-
spatial analysis through advanced machine learning tools (Wu, 2025).
Input data consisted of Sentinel-2 MSI surface reflectance bands (blue,
green, red, and near-infrared), supplemented by three spectral indices
calculated using geemap (Wu, 2020): the Enhanced Vegetation Index
(EVI) to isolate vegetation from soil and water (Huete et al., 2002), and
the Land Surface Water Index (LSWI) to highlight water-rich features
like mangroves (Chandrasekar et al., 2010), and the Mangrove Vegeta-
tion Index (MVI) to distinguish mangroves from other land covers
(Baloloy et al., 2020), along with elevation data from the Copernicus
DEM GLO-30. EVI can effectively separate vegetation from soil and
water, providing advantages for vegetation detection and feature
extraction. LSWI is sensitive to the liquid water content in vegetation
and soil, highlighting water-rich areas such as mangroves. MVI is spe-
cifically designed to distinguish mangroves from non-mangrove vege-
tation and other non-vegetated surfaces, enhancing classification
accuracy in complex coastal landscapes (Xiong et al., 2024). Although
the ESA WorldCover v2.0 product provides globally consistent
mangrove masks, all training samples and test regions were visually
inspected using Sentinel-2 MSI imagery from 2021 and high-resolution
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Fig. 3. Model training and dataset preparation. A: Training dataset samples distribution. B: Optimization of the mangrove identification model.

Google Earth imagery to ensure temporal consistency with the label
data. The Global Mangrove Watch dataset (1996-2020) was addition-
ally consulted as a stable long-term spatial reference to contextualize
mangrove distribution patterns. Areas exhibiting evident misclassifica-
tion in the 2021 imagery were removed prior to training. Furthermore,
the performance of the MIM was evaluated using independent
high-resolution external datasets rather than relying solely on the
WorldCover labels, ensuring that the validation metrics are not affected
by potential label uncertainties.

2.3.1.2. Training parameters and fine-tuning strategy. For model training,
we selected cloud-free images from ten global regions and merged them
before tiling into 256 x 256 pixel tiles, ultimately generating 14,342
image-label pairs (Fig. 3A). The dataset was split with 80 % for training
and 20 % for validation. The model was trained using a ResNet-50
backbone integrated with a Feature Pyramid Network (FPN). Training
was performed with a batch size of 4 using stochastic gradient descent
(SGD) optimization, and an initial learning rate schedule that decayed
by a factor of 0.8 every five epochs. The initial mangrove identification
model was trained using Mask R-CNN for 45 epochs with a learning rate
of 0.0001. Subsequent fine-tuning involved three phases. During all fine-
tuning stages, the batch size remained 4 and the same learning rate
decay schedule was maintained. The first phase increased the learning
rate to 0.001 and training for an additional 50 epochs on the original
dataset; second, keeping the epoch count and learning rate constant
while expanding the dataset with cloud-free images from additional
regions (adding 3736 images with corresponding labels); and finally,
maintaining the learning rate at 0.001 while increasing the number of
training epochs to 60 for further optimization. The model achieving the
highest IoU across all training and fine-tuning phases was selected as the
final mangrove identification model (Fig. 3B).

2.3.2. Mangrove dynamic analysis

2.3.2.1. Shoreline change calculation. In order to quantitatively analyze
the changes in shoreline position during our research area within the
study period, we applied the Digital Shoreline Analysis System (DSAS)
(developed by USGS) which is one of the tools that are integrated into
ArcGIS. It has been widely adopted worldwide because it offers many
statistical methods based on multi-time shoreline data. In this paper, we
use the historical mangrove shoreline information extracted via remote

sensing as input to DSAS (Wu et al., 2025). Then, among these statistics,
linear regression rate (LRR)was chosen to be the main metric to calcu-
late the long-term shoreline change trends due to its wide application
and high accuracy. The LRR refers to the slope coefficient calculated
with Least Square Method fitting all shoreline points along each transect
into a straight line, so it can represent the overall trend of shoreline
evolution during the whole timespan (Himmelstoss et al., 2021). If the
LRR <O then there will exist an erosion tendency at the shoreline,
meaning that the mangrove shorelines tend to move towards inland. On
the contrary if the LRR>0 means that the shoreline is moving towards
sea direction due to deposition process. To determine the possible im-
pacts of mangrove forests in comparison with sea level rise, the average
vertical sediment accumulation (AVSA) rate was calculated using the
following formula (Xiong et al., 2024):

AVSA = Vtand 4)

where V is the average accretion rate of shorelines, and 6 is the average
slope in the Shui Hau and Tung Chung obtained from DEM.

2.3.2.2. Vegetation health assessment. The Transformed Chlorophyll
Absorption in Reflectance Index (TCARI) can reflect the change of
chlorophyll contents and photosynthesis activities of plants effectively,
thus it serves well as a proxy variable for vegetation health status
(Sharifi, 2020). In this study, the LandTrendr (LT) approach based on
Sentinel-2 data has been used to extract disturbance pattern at different
time scales from mangroves lost or gained area by analyzing spatio-
temporal trajectory of spectral indices to determine whether there were
any abrupt or slow changes (Chen et al., 2025). LT, as a temporal seg-
mentation algorithm designed for time-series remote sensing data,
models pixel-level spectral trajectories as a series of connected linear
segments. This enables the extraction of both sudden disturbances and
long-term subtle changes in vegetation dynamics (Kennedy et al., 2010).
When combined with TCARI, LT first identifies zones of mangrove
disturbance or recovery through spectral trajectory segmentation.
TCARI’s sensitivity to chlorophyll content is then used to infer vegeta-
tion health within these LT-identified segments: negative TCARI trends
reflect declines in chlorophyll and degraded vegetation health, whereas
positive trends indicate recovery or improved physiological condition.
By combining the trend of TCARI with LT results, we could assess the
dynamic variation of vegetation vigor and health condition over man-
groves. The formula for calculation of TCARI is shown below:
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Fig. 4. Comparison of mangrove distribution maps from various sources.

3[((EDGE — RED) — 0.2)(EDGE

TCARI = —GREEN)(EDGE/RED)]

(5)

where RED, GREEN, and EDGE respectively represent the pixel values of
the red, green, red edge bands.

2.3.3. Remote sensing SSC estimation model

To estimate suspended sediment concentration (SSC) in the Shui Hau
and Tung Chung, we adopted the Semi-Empirical Radiative Transfer
(SERT) model, which has been validated for turbid estuarine waters (Luo
et al., 2022). Previous publications (Pan et al., 2018; Tang et al., 2019)
have successfully demonstrated the potential of using the SERT model in
turbid waters. Due to the small quantity of high-quality cloudless
Landsat images available each year, and this study analyzes and dis-
cusses multi-year SSC changes, and do not focus on short time scale
processes. Therefore, we averaged the SSC in the Shui Hau and Tung
Chung from the Landsat images (time interval of every four years) to
obtain the interannual time series SSC distribution. The SSC was esti-
mated using Eq. (6) as follows:

2 X a X Ry

C=—"— 6
B x (a—Rs)® ©

where SSC is the suspended sediment concentration in g/L, Ry is the
atmospherically corrected remote sensing reflectance in sr, and o, p
are empirical coefficients specific to Landsat-8 OLI Band 4 (655 nm): o =
0.0763, p = 11.5306 (Luo et al., 2022).

2.3.4. Precision assessment

In remote sensing data analysis, ensuring the accuracy and reliability
of the results is of paramount importance (Wu et al., 2025). To validate
the annual mangrove mapping results derived using the MIM, we
implemented a comprehensive and standardized accuracy assessment
procedure. Specifically, Sentinel-2 MSI imagery from 15 representative
regions was analyzed using the MIM. The resulting mangrove

segmentation were compared with the mangrove area data from the ESA
dataset to assess spatial consistency and accuracy. Furthermore, to
enhance the validation process, visual verification was performed using
supplementary datasets comprising Google Earth imagery from 2018 to
2020, the LREIS Global Mangrove dataset (2018-2020) (Xiao et al.,
2021), and the Land Utilization in Hong Kong (LUHK) mangrove dataset
covering the same period. This multi-source validation approach en-
hances the credibility and robustness of the results. To comprehensively
evaluate the performance of the MIM, both pixel-level and area-level
metrics were employed. During model training and selection, the IoU
served as the primary segmentation metric to ensure accurate mask
learning (Fig. 3B). For the final validation stage, area-based accuracy
measures were further introduced to assess the agreement between
predicted and reference mangrove extents at the regional scale. Specif-
ically, the mean absolute percentage error (MAPE) and root mean square
error (RMSE) were calculated between the predicted and reference
mangrove extents. Smaller MAPE indicates better modeling results, and
smaller RMSE denotes higher prediction accuracies. These accuracy
criteria are calculated as (Zheng et al., 2016):

+* 100% 7

i

1 n
MAPE = Z

i=1

RMSE = [0S () ®

i=1

where, n is the number of samples, and y; and yjrefer to the measured
and predicted values for the i th sample.

3. Results
3.1. Validation of MIM

The validation of the MIM was conducted using a multi-source
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approach, incorporating Sentinel-2 MSI imagery from 15 diverse regions
(Fig. 5A) and high-resolution validation datasets for the Shui Hau and
Tung Chung from 2018 to 2020, including Google Earth imagery, the
LREIS Global Mangrove dataset (2018-2020), and LUHK mangrove
raster grid (Fig. 4). However, visual inspection of high-resolution Google

Earth imagery in the Shui Hau area reveals fragmented and dying
mangrove patches near the seaward edge (Fig. 4) that are not identified
by the LREIS and LUHK datasets. These 15 validation regions are stra-
tegically distributed across global mangrove biomes, encompassing
North America, West Africa, South Asia, and Southeast Asia and



R. Wu et al.

Trees, Forests and People 23 (2026) 101146

Fig. 6. Spatiotemporal dynamics of mangrove area and shoreline change in Shui Hau and Tung Chung (2016-2024). A1-B1: Temporal changes in mangrove area.
A2-A6 and B2-B6: Erosion and accretion segments along the mangrove shoreline and spatial distribution of shoreline movement rates.

Oceania, as indicated on the world map (Fig. 5A). They span a diverse
range of geomorphological settings, including estuaries, deltas, and
bays, ensuring that the model is tested under heterogeneous environ-
mental conditions. Comparative analysis revealed strong agreement
between MIM-derived mangrove segmentation and ESA reference
datasets (Fig. 5C-E), with both datasets mangrove area closely aligned
along the 1:1 line (Fig. 5B), demonstrating the model's robust spatial
consistency. In particular, the model accurately captured both compact
and fragmented mangrove distributions across varied coastal land-
scapes. For instance, in deltaic environments (Fig. 5C1, C5, E2), the MIM
preserved the intricate boundary structures and narrow tidal creeks,
while in narrow estuarine channels (Fig. 5C2, D4), the segmentation
results remained continuous and coherent. Quantitative assessment
yielded a mean absolute percentage error (MAPE) of 6.91 % and a root
mean square error (RMSE) of 0.04 x 10* ha for mangrove area esti-
mation, indicating high prediction accuracy (Fig. 5B).

External datasets were used as complementary references. These
datasets provide high-resolution or standardized baselines, which can
help contextualize and cross-check the model outputs. While some
fragmented or degraded mangrove patches may not be captured by these
datasets, they still offer useful guidance for evaluating the general
spatial distribution of mangroves. Together, the external datasets and
model predictions provide a more comprehensive assessment of
mangrove extent. When benchmarked against existing mangrove studies
in the Shui Hau and Tung Chung regions, the spatial distribution of
mangroves extracted in this research shows high consistency with the
coastal ecological unit characterization of Shui Hau Village presented
(Ho and Chung, 2025). Meanwhile, the mangrove distribution ranges in
both Shui Hau and Tung Chung can be spatially matched with the
mangrove sample points derived from ultra-high-resolution imagery
(Zhang et al.,, 2025), providing direct localized validation for the
model’s applicability and reliability in regional mangrove mapping. This
comprehensive validation, integrating global, regional, and
very-high-resolution satellite references, conclusively demonstrates the
model's effectiveness in mangrove identification, providing a reliable
foundation for subsequent spatiotemporal analysis of Shui Hau and
Tung Chung mangrove ecosystems. The model's strong performance
ensures accurate detection of both subtle and pronounced changes in
mangrove distribution patterns over time.

3.2. Variations in mangrove area and shoreline dynamics

To accurately characterize the mangrove change trends in Shui Hau
and Tung Chung, we first delineated the most stable core regions from
the annual mangrove identification results over 2016-2024 as the focal
study areas (Fig. 6). Given that the mangrove patches in these sites are
spatially small and the regional-scale RMSE of the MIM results is 0.04 x
10* ha (Fig. 5B), the analysis focused on stable mangrove zones to
minimize classification uncertainty caused by spatial resolution limita-
tions. To ensure that the detected trends represented genuine ecological
change rather than model artifacts, historical Google Earth imagery was
visually interpreted, and only the core regions that remained consis-
tently recognizable across years were retained for detailed analysis.
From 2016 to 2024, the mangrove ecosystems in Shui Hau and Tung
Chung exhibited markedly divergent trajectories in both area and
shoreline dynamics (Fig. 6A1-B1). Specifically, the mangrove area in
Shui Hau demonstrated a continuous decreasing trend, shrinking from
0.77 ha in 2016 to just 0.39 ha by 2024—an average annual loss of
approximately 0.048 ha (Fig. 6A1). In contrast, Tung Chung experienced
a gradual increase in mangrove area, expanding from 3.28 ha in 2016 to
3.59 ha in 2024, corresponding to a mean annual increase of 0.059 ha
(Fig. 6B1).

However, mangrove shoreline-level assessments revealed more
nuanced patterns of mangrove change in both regions. In Shui Hau,
shoreline dynamics were dominated by erosion, with eroding segments
accounting for 92 % of the total mangrove shoreline count while
accretional segments represented only 8 % (Fig. 6A2-A5). Conversely,
Tung Chung exhibited a predominantly accretional trend, where
expanding shoreline segments constituted 72 % of the total count,
significantly outweighing eroding segments at 28 % (Fig. 6B2-B5). The
contrasting patterns were further reflected in the spatial dynamics of
mangrove shorelines. Along the Shui Hau coast, the mangrove shoreline
predominantly retreated between 2016 and 2024, indicative of wide-
spread erosion (Fig. 6A6). The average shoreline retreat rate was —3.07
m/yr, with peak erosion reaching up to 6.41 m/yr. In contrast, Tung
Chung's mangrove shoreline exhibited signs of progradation in several
sectors, with an average expansion rate of 0.85 m/yr and a maximum
seaward advance of 4.87 m/yr (Fig. 6B6). In comparison to the Tung
Chung, the Shui Hau is undergoing more severe mangrove degradation
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Fig. 7. Mangrove change and vegetation health analysis using LandTrendr and TCARI index. A: Temporal trends of vegetation decline in Shui Hau. B: Vegetation

recovery and stabilization patterns in Tung Chung.

and shoreline erosion. Notably, the contrasting trends of mangrove loss
in Shui Hau and gain in Tung Chung are not random, but are likely
driven by differences in local environmental conditions that govern
mangrove growth and survival, including variations in the intensity of
hydrodynamic forces acting on the shorelines, the availability of sedi-
ment for substrate accretion, and potential anthropogenic disturbances
that may affect habitat suitability.

3.3. Example segmentation results

As expected, the LT algorithm effectively captured abrupt distur-
bance events, including both mangrove loss and expansion, as well as
changes in vegetation health status as indicated by the TCARI index
(Fig. 7). In Shui Hau, within areas that experienced mangrove loss, the
LT outputs revealed a consistent decline in TCARI values over time,
reflecting a gradual deterioration in vegetation health. Specifically, both
subregions (labeled 1 and 2) exhibited decreasing TCARI trends from
2016 to 2024 (Fig. 7A), consistent with the observed retreat of
mangrove area. In contrast, mangrove gain regions in Tung Chung
showed two distinct temporal patterns (Fig. 7B). In subregion 1,

mangroves expanded seaward from 2016 to 2024 (Fig. 6B7), accom-
panied by a steady increase in TCARI values, suggesting progressive
improvement in vegetation vigor. In subregion 2, mangroves exhibited
expansion between 2016 and 2018, followed by relatively stable
coverage from 2018 to 2024. Correspondingly, TCARI values increased
during the early period but plateaued thereafter, indicating a stabiliza-
tion in vegetation health (Fig. 7B).

4. Discussion
4.1. Comparing different models

To the best of our knowledge, this study represents the first appli-
cation of deep learning-based instance segmentation using Sentinel-2
MSI imagery for mangrove mapping on Lantau Island. To benchmark
the performance of the Mask R-CNN model, additional mod-
els—including Unet, FPN, DeepLabV3, and DeepLabV3+—were trained
using the same dataset. Importantly, the semantic segmentation models
were deliberately trained until their validation IoU exceeded that of
Mask R-CNN. IoU, although an important metric, has inherent
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Table 2
Accuracy comparison of different mangrove segmentation models.
Unet FPN DeeplLabV3  DeeplLabV3+  MaskR-
CNN
OA 0.9031 0.9192 0.9281 0.9202 0.9434
Precision 0.6658 0.7127 0.7399 0.7162 0.8015
Recall 0.945 0.936 0.9358 0.9337 0.9184
F1-Score + 0.7812 0.8092 0.8264 0.8106 0.8559
IoU 0.6409 0.6796 0.7041 0.6816 0.7482
Non-Mangrove 0.9864 0.9846 0.9847 0.9841 0.9811
precision
Non-Mangrove 0.8938  0.9155  0.9263 0.9171 0.949
recall
Non-Mangrove 0.9378  0.9488  0.9546 0.9494 0.9648
F1-Score
Non-Mangrove 0.8829 0.9025 0.9132 0.9037 0.932
IoU

limitations in evaluating segmentation performance—particularly in its
inability to capture false positives, boundary accuracy, and fine-scale
structural preservation (Zhang et al., 2022). Therefore, we include
additional assessment metrics to more comprehensively evaluate model
effectiveness. When evaluated across multiple metrics, Mask R-CNN
demonstrated competitive and robust performance across multiple
metrics, achieving an overall accuracy (OA) of 94.34 %, a precision of
80.15 %, and an F1-Score of 85.59 %. Notably, the precision of Mask
R-CNN exceeded that of Unet by 13.57 %, FPN by 8.88 %, DeepLabV3 by
6.16 %, and DeepLabV3+ by 8.53 %. These results suggest that while
other models may offer marginally higher IoU, Mask R-CNN excels in
correctly identifying mangrove pixels with fewer false positives. For
non-mangrove pixels, Mask R-CNN also demonstrated superior perfor-
mance, achieving a precision of 98.11 %, a recall of 94.9 %, an F1-Score
of 96.48 %, and an IoU of 93.2 %. Compared to DeepLabV3, Deep-
LabV3+, FPN, and Unet, Mask R-CNN's non-mangrove F1-Score was
higher by 1.02 %, 1.54 %, 1.60 %, and 2.70 %, respectively, while its
recall exceeded the others by 2.27 %-5.52 %. These metrics indicate that
Mask R-CNN effectively minimizes false negatives for non-mangrove
areas, ensuring robust classification across both mangrove and
non-mangrove classes (Table 2).

Examples of segmentation results across various models (Fig. 8A-D)
further highlight the spatial advantages of the Mask R-CNN model. Four
representative sites with distinct environmental settings were selected
for analysis: an estuary with weak tidal dynamics, a bay enclosed by
urban development, a delta where mangroves are clearly separated from
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terrestrial vegetation, and an estuary where mangroves are intermixed
with non-mangrove vegetation. When compared to the ground-truth
labels, the Mask R-CNN model consistently outperformed other
models, particularly in boundary delineation and fine-detail preserva-
tion. For instance, Unet exhibited obvious misclassifications in the es-
tuary with weak tidal forces (Fig. 8A), where non-mangrove areas were
incorrectly labeled as mangroves. Similarly, in the mixed estuarine
environment (Fig. 8D), Unet, FPN, DeepLabV3, and DeepLabV3+ all
failed to accurately capture fine-scale mangrove structures and frag-
mented patches. In contrast, Mask R-CNN effectively mitigated these
issues, delivering more precise and detailed segmentation, especially in
complex, heterogeneous, or linear mangrove habitats.

Nevertheless, historical mangrove classification using Sentinel im-
agery still presents inherent challenges due to complex edge structures,
fragmented habitat distributions, dynamic intertidal conditions, and
varying image quality. These factors demand robust models capable of
accurate boundary delineation and class discrimination. Although the
10 m resolution of Sentinel-2 MSI is adequate for regional mangrove
mapping, it imposes constraints on detecting small or narrowly
distributed patches. Seedling clusters and fine-edge features are sus-
ceptible to mixed-pixel effects, which may lead to underestimation of
their extent or to boundary misclassification. This spatial limitation can
also increase confusion in areas where mangroves exhibit spectral sim-
ilarity with adjacent vegetation. While the Mask R-CNN mitigates many
of these issues by refining object boundaries at the instance level,
challenges persist, particularly in delineating sparsely distributed
mangrove stands and distinguishing them from spectrally similar plant
communities. (Fig. 8). Future improvements could incorporate radar
backscatter data from historical Sentinel-1 imagery to extract comple-
mentary structural indices and texture features. Moreover, refining
feature fusion strategies between shallow and deep network layers may
enhance the model's ability to detect subtle and complex mangrove
patterns (Zhang et al., 2025). By addressing these aspects, the model
could achieve more reliable classification performance and improved
adaptability in ecologically heterogeneous and tidally influenced
environments.

4.2. Impacts of suspended sediment concentration
The growth and maintenance of mangroves are highly dependent on

sediment (Phan et al., 2015; Swales et al., 2019), which forms the
physical foundation for mangrove colonization, vertical accretion, and

Fig. 8. Comparative segmentation results using different deep learning models. A-D: Representative sites with distinct environmental settings: A) An estuary with
weak tidal dynamics; B) A bay enclosed by urban development; C) A delta where mangroves are clearly separated from terrestrial vegetation; D) An estuary where

mangroves are intermixed with non-mangrove vegetation.
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Fig. 9. Temporal trends in suspended sediment concentration in Shui Hau and Tung Chung from 2016 to 2024.
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Fig. 10. Estimation of suspended sediment concentration distribution in Shui Hau and Tung Chung from 2016 to 2024.

overall habitat stability. Sediment inputs not only provide essential
nutrients and suitable substrates for seedling establishment but also
contribute to surface elevation gains that counteract the impacts of
sea-level rise (Wu et al., 2025). Adequate and continuous sediment
supply enhances root anchorage, promotes sediment trapping by vege-
tation, and supports the long-term seaward progradation of mangroves
(Long et al., 2025). An analysis of suspended sediment concentration
(SSC) in Shui Hau and Tung Chung revealed contrasting trends between
the two sites. In Shui Hau, SSC increased from 0.028 g/L in 2016 to
0.032 g/L in 2024, while in Tung Chung, SSC rose from 0.027 g/L to
0.065 g/L over the same period (Fig. 9). Notably, regions with higher
SSC in both bays largely overlapped with zones of active mangrove
growth (Fig. 10). Interestingly, after 2020, SSC levels in both Shui Hau
and Tung Chung showed different degrees of decline. In Shui Hau, SSC
dropped from 0.052 g/L in 2020 to 0.032 g/L in 2024, representing a
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37.68 % decrease. In Tung Chung, SSC decreased from 0.08 g/L to 0.065
g/L, areduction of 19.51 %. The pronounced rise in SSC before 2020 was
likely associated with large-scale reclamation activities related to the
construction of the Hong Kong International Airport’s (HKIA) third
runway. During the reclamation phase, extensive dredging and sediment
disturbance introduced substantial quantities of suspended particles into
the adjacent coastal waters, temporarily elevating SSC in both Tung
Chung and Shui Hau. After the completion of reclamation works around
2020, sediment input to the bays decreased, leading to a gradual re-
covery of SSC toward pre-construction levels (Fromant et al., 2021;
Wang et al., 2023). A reduction in SSC results in diminished sediment
deposition on intertidal substrates, which directly weakens the vertical
accretion capacity of mangrove habitats. As mangrove root systems rely
on continuous sediment burial for anchorage and structural stability,
reduced sediment supply leads to weaker root support, making
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Fig. 11. A: Daily wave heights of the Shui Hau and Tung Chung. B-C: Wave characteristics of the Shui Hau and Tung Chung.

mangroves increasingly susceptible to erosion and physical disturbance
(Wang et al., 2025). Meanwhile, Shui Hau experienced significant
mangrove loss in the seaward region (subregion 2) between 2018 and
2024 (Fig. 7A), with a continuous decline in TCARI values indicating
deteriorating vegetation health. In contrast, although Tung Chung’s
subregion 2 was disturbed after 2018, TCARI values plateaued rather
than continued to rise, suggesting that the decline in SSC may have
limited further improvements in vegetation health (Fig. 7B).

Previous studies have shown that sediments can provide space for
mangrove colonization and expansion (Wu et al., 2025). For instance,
substantial sediment deposition at the Amazon River estuary increased
the mangrove area by over 700 km? within 12 years (Nascimento et al.,
2013). Similarly, sediments delivered by the Ganges and Brahmaputra
Rivers promoted vertical accretion, contributing to coastal stabilization
in response to postglacial sea-level rise (Wilson and Goodbred, 2015).
Therefore, when SSC decreases, the physical environment supporting
mangrove development naturally diminishes, leading to corresponding
declines in both mangrove health and spatial extent.
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4.3. Impacts of ocean dynamics

Mangroves growing in intertidal zones with shallow coastal waters
are highly susceptible to wave dynamics (Xie et al., 2022). Persistent
wave action can erode shorelines, destabilize substrates, and expose
mangrove root systems, ultimately leading to mangrove mortality and
landward retreat (Wang et al., 2024). Wave direction and SHW analyses
for both Shui Hau and Tung Chung sites reveal that waves predomi-
nantly approach from the west to east-northeast direction (Fig. 11B-C).
However, a striking contrast exists between the two sites in terms of
wave energy intensity. As shown in Fig. 11B, Shui Hau faces intense
wave energy: only 10.1 % of SHW values are low (0-0.2 m), while 52.5
% fall in the 0.2-0.5 m range and 31.1 % in the 0.5-0.8 m range.
Notably, 6.3 % of waves exceed 0.8 m in height. Field observations at
Shui Hau reveal exposed air roots of mangroves (Fig. 12A) and stands of
mangroves in a dying state (Fig. 12C). In contrast, Tung Chung exhibits
much calmer conditions, with 72.7 % of wave heights below 0.2 m, 27.1
% falling between 0.2-0.5 m, and only 0.2 % between 0.5-0.8 m.
Importantly, no waves exceeding 0.8 m were recorded at Tung Chung
(Fig. 11B-C). Field observations in Tung Chung show the presence of
newly established mangrove seedlings expanding seaward (Fig. 12B,
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Fig. 12. Photographs of the mangrove sites in Shui Hau and Tung Chung, taken in February 2025.
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Fig. 13. Sea level rise and its simple linear regression analysis, 1998-2024.

Fig. 12D). The persistent influence of high-energy waves at Shui Hau is
likely a major driver of extensive landward mangrove retreat, reflected
in the high shoreline erosion rate of —3.37 m/yr, compared to a
significantly lower rate of —0.47 m/yr at Tung Chung (Fig. 6A6-B6).As
shown in Fig. 11A, both sites experienced a marked spike in SHW in
2018, where Shui Hau reached 3.2 m, and Tung Chung reached 1.74 m,
coinciding with the timing of a disturbance observed in Tung Chung’s
subregion 2. Following this event, TCARI values in that area plateaued,
suggesting that wave-induced stress may have halted further improve-
ments in vegetation condition (Fig. 7B).

It is widely acknowledged that rising sea levels driven by global
warming pose a significant threat to mangrove ecosystems (Alongi,
2015). Historical records have documented localized and regional ex-
tinctions of mangrove forests, primarily triggered by abrupt and rapid
sea-level rise events (Cazenave et al., 2014). On Lantau Island, the Shek
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Pik tide gauge station provides the longest continuous record of sea
level, offering valuable insights into long-term coastal dynamics. Ac-
cording to measurements of mean sea level trends from this station, sea
levels at both Shui Hau and Tung Chung have exhibited a relatively
stable pattern over the past nearly three decades (Fig. 13). The calcu-
lated rate of mean sea-level rise is 0.3 mm/yr, indicating a slow and
stable change over time. Additionally, the average vertical sediment
accumulation rates, derived from the mean slope of the DEM data, were
12.36 mm/yr at Tung Chung and 3.84 mm/yr at Shui Hau, both of which
far exceed the rate of sea-level rise. This suggests that mangroves in
these two regions are currently not under threat from sea-level rise.
Although the long-term sea-level record indicates a stable and slow rate
of rise for the past 27 years (Fig. 13), it should be acknowledged that
future accelerations in regional sea-level rise cannot be fully ruled out.
Moreover, tide-gauge data represent relative sea level at a fixed point
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Fig. 14. A: Field survey route and ground photographs along the shooting path in the Shui Hau. B: Comparison between MIM-delineated mangrove patches and

corresponding Google map images acquired in 2020 (from Google map).

and may not capture short-term extremes or localized subsidence effects.
Therefore, while current trends suggest limited risk, continued moni-
toring remains essential.

4.4. Dataset discrepancies and segmentation challenges of the MIM

The visual comparison reveals evident discrepancies between the
MIM-derived results and the LREIS Global Mangrove dataset
(2018-2020) as well as the LUHK dataset in the Shui Hau area, partic-
ularly regarding fragmented and dying mangrove patches (Fig. 4). Such
inconsistencies are not uncommon among high-resolution mangrove
datasets (Zhang et al., 2025), largely due to mixed pixel effects and
insufficient spatial resolution. To verify the accuracy of our MIM results,
we conducted field observations along the mangrove zones delineated
by the LREIS dataset. The field survey confirmed that most of the areas
classified as mangrove by LREIS in Shui Hau were in fact non-mangrove
vegetation rather than true mangroves (Fig. 14A). Moreover, the LUHK
dataset aggregated mangrove and swamp vegetation into a single class
and left portions of the Shui Hau coastal zone unmapped. In contrast,
MIM accurately delineated fragmented mangrove patches that corre-
sponded well with ground photographs from Google map acquired in
2020 (Fig. 14B), effectively capturing the spatial heterogeneity of these
small patches. By leveraging multi-spectral Sentinel-2 imagery, eleva-
tion data, and the instance segmentation capability of Mask R-CNN,
MIM achieves pixel-level boundary precision and enhanced discrimi-
nation of sparse mangrove assemblages. This improvement is particu-
larly evident in ecologically complex zones, where conventional
semantic segmentation or low-resolution global datasets struggle to
identify narrow and fragmented patches. This capability is crucial for
establishing a continuous, temporally consistent mangrove monitoring
framework that can support long-term assessments of degradation and
recovery dynamics across Hong Kong’s coastal wetlands.

Despite these strengths, several segmentation challenges were
observed in vegetation-complex environments. As shown in Fig. 8,
misclassifications occasionally occurred in transitional zones where
mangroves co-exist with saltmarsh plants or low shrubs that exhibit
similar spectral characteristics. Shadows, tidal water influence, and
mixed-pixel effects further reduced separability along fine boundaries,
resulting in slight over- or under-segmentation in some cases. Small and
sparsely distributed seedling clusters were also difficult to detect

14

consistently due to their limited canopy size relative to the 10 m
Sentinel-2 resolution (Fig. 4). In addition, the use of the 30 m Copernicus
DEM introduces an inherent scale mismatch with the 10 m Sentinel-2
imagery. Although elevation varies gradually across coastal landscapes
and can still provide meaningful low-frequency topographic context
(Fereshtehpour et al., 2024), the coarser DEM resolution may limit the
model’s ability to capture fine-scale elevation differences along narrow
tidal flats or embankments. This limitation suggests that future work
could benefit from incorporating higher-resolution DEM or
LiDAR-derived elevation data to further improve boundary delineation
in complex micro-topographic environments.

Beyond methodological considerations, the spatial patterns identi-
fied by the MIM also hold direct relevance for mangrove management.
Areas exhibiting persistent shoreline retreat or negative vegetation
trends can serve as priority zones for targeted restoration or sediment
supplementation. Conversely, regions showing natural recovery may
provide suitable reference sites for informing restoration design and
evaluating conservation effectiveness. These insights can assist man-
agers in allocating resources and developing adaptive strategies to
safeguard mangrove resilience under ongoing environmental change.

5. Conclusions

By integrating deep learning, shoreline change modeling, SSC esti-
mation, and vegetation health assessment, this study offers a compre-
hensive framework for long-term mangrove monitoring under data-
scarce and morphologically complex conditions. The main findings
can be shown as follows:

1. We established a high-precision mangrove identification model by
applying the Mask R-CNN framework with Sentinel-2 imagery,
achieving a MAPE of 6.91 % and outperforming semantic seg-
mentation models (e.g., Unet, DeepLabV3+) in delineating frag-
mented mangrove patches with complex boundaries.

2. The two representative mangrove stands on Lantau Island exhibited
markedly divergent trends during 2016-2024. At Shui Hau,
mangrove area experienced continuous decline from 0.77 ha to 0.39
ha, representing a substantial reduction of 49 %, accompanied by
shoreline retreat at an average rate of 3.07 m/yr, indicating severe
erosional degradation. In striking contrast, Tung Chung
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demonstrated steady mangrove expansion from 3.28 ha to 3.59 ha
(9.5 % increase), with shoreline progradation occurring at 0.85 m/
yr, reflecting favorable developmental conditions.

3. The spatial divergence in mangrove dynamics between these two
sites was primarily governed by distinct hydrodynamic and sedi-
mentary regimes. At Shui Hau, high wave exposure coupled with
declining suspended sediment concentration (SSC) contributed to
habitat fragmentation and exacerbated shoreline erosion. In
contrast, Tung Chung benefited from more moderate wave regimes
and favorable sediment dynamics, which provided stable sedimen-
tary substrates facilitating natural mangrove expansion. This striking
contrast underscores the critical control of wave-sediment coupling
processes on mangrove succession patterns.

The results underscore the importance of high-resolution historical
mapping in supporting adaptive conservation strategies. For future
management, targeted restoration efforts should prioritize erosion-
prone areas such as Shui Hau, while maintaining natural expansion in
regions like Tung Chung. Community engagement and the protection of
sediment delivery pathways will be key to enhancing mangrove resil-
ience against anthropogenic and climatic pressures.
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