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A B S T R A C T

Mangroves play a crucial role in coastal protection and biodiversity but face escalating threats from anthropo
genic pressures and climate-driven disturbances. Long-term monitoring remains challenging due to mangrove 
fragmentation and limited high-resolution historical data. This study presents a deep learning–based approach 
for mangrove identification, leveraging cloud-free Sentinel-2 MSI imagery (10 m resolution) and Mask R-CNN to 
map and analyze mangrove dynamics on Lantau Island, Hong Kong, from 2016 to 2024. The model integrates 
surface reflectance bands, spectral indices (EVI, LSWI, MVI), and elevation data, achieving high accuracy (mean 
absolute percentage error: 6.91%; root mean square error: 0.04 × 10⁴ ha). Multi-source validation demonstrated 
its strong generalization capacity across global mangrove ecosystems. Spatiotemporal analysis revealed diver
gent trends in two key mangrove stands. In Shui Hau, mangrove area declined continuously from 0.77 ha in 2016 
to 0.39 ha in 2024, accompanied by shoreline erosion at a rate of 3.07 m/yr. This loss was associated with 
reduced suspended sediment concentration and persistent high wave energy. In contrast, Tung Chung’s 
mangrove area expanded from 3.28 ha to 3.59 ha, with shoreline accretion at 0.85 m/yr, supported by moderate 
wave dynamics and higher sediment availability. These findings underscore the value of 10 m resolution 
Sentinel-2 MSI imagery for historical mangrove mapping, providing critical insights for targeted conservation 
and management strategies.

1. Introduction

Mangroves constitute a distinctive assemblage of salt-tolerant vege
tation primarily occupying the intertidal zones of tropical and sub
tropical coastlines, forming a critical transition interface between 
terrestrial and marine ecosystems (Donato et al., 2011; Giri et al., 2011). 
Globally, mangrove forests span approximately 147,000 km² of coastal 
areas (Leal and Spalding, 2022), accounting for less than 1 % of the 
world’s tropical forest cover (Giri et al., 2011; Jennerjahn and Ittekkot, 
2002). Despite their relatively limited spatial extent, mangroves play an 
indispensable role as significant global carbon sinks, contributing sub
stantially to carbon sequestration and thus climate change mitigation 
(Duarte et al., 2013; Richards et al., 2020). Nevertheless, these vital 
ecosystems are increasingly threatened by rising sea levels and 

intensifying anthropogenic pressures (Blankespoor et al., 2017; Gold
berg et al., 2020; Monika and Yadav, 2022; Ward et al., 2016). During 
the latter half of the 20th century, mangrove areas declined at an 
alarming rate of 1–2 % annually, largely driven by rapid urbanization, 
industrial development, and the escalating impacts of sea-level rise 
(Friess et al., 2019; Woodroffe et al., 2016). Therefore, precise mapping 
and monitoring of mangrove distribution are essential for effective 
conservation, ecological restoration, and coastal risk assessment.

Some studies have focused on mangrove changes in river deltas and 
estuaries, whereas mangrove dynamics in marine embayment have 
received comparatively less attention. In Asia, in certain areas of Indo
nesia's Subang Regency, mangrove area declined by 83 % between 2017 
and 2022 due to aquaculture expansion, with the remaining 17 % of 
losses attributed to other human activities and natural hazards 
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(Dzulfigar et al., 2024). In the Maldives, widespread mangrove dieback 
occurred in 2020 due to salinity stress from high sea levels and an 
extreme positive Indian Ocean Dipole event (Carruthers et al., 2024). In 
contrast, the Beilun Estuary exhibited an overall 11.2 % increase in 
mangrove area from 1986 to 2022, with localized losses on the landward 
side offset by seaward expansion behind barrier islands (Long et al., 
2025). In Africa, the Niger Delta lost 2536 km² of mangroves over the 
same period, with oil spills accounting for 54.27 % of the losses and 
urban expansion accelerating landward retreat at 13.58 m/yr (Wang 
et al., 2025). Ghana's mangrove area declined by 15.4 % between 2015 
and 2024, mainly due to urban expansion, indiscriminate waste 
disposal, wildfires, and uncontrolled sand and salt mining (Ofori et al., 
2025). In North America, Florida's mangroves declined by 547.3 km² 
from 1986 to 2022, mainly due to major storms, while sea-level rise 
played a minimal role (Liang et al., 2025). In South America, coastal 
Guyana recorded a net mangrove gain of 0.09 km² from 2013 to 2022, 
primarily driven by restoration initiatives (Hamer et al., 2024). Oce
ania's Fly River Delta lost 33.83 % of its mangroves from 1988 to 2023, 
with 54.71 % of coastal losses attributed to wave action and human 
activity, despite local seaward gains (Wu et al., 2025). These divergent 
patterns underscore the complexity of mangrove dynamics, shaped by 
interactions among sediment supply, wave energy, land use, and 
extreme weather events (Hagger et al., 2022).

The understanding of the spatial-temporal characteristics of 

mangrove ecosystems plays a critical role in determining appropriate 
protection measures or restoration plans (Ellison et al., 2020; Jia et al., 
2014; Zhang et al., 2023). However, accurately mapping the spatial 
distribution of mangroves and continuously monitoring their temporal 
dynamics are fundamental prerequisites for designing effective conser
vation and restoration strategies (Ellison et al., 2020; Jia et al., 2014; 
Zhang et al., 2023). Previous studies have employed a range of 
approaches—including field surveys and remote sensing—to quantify 
mangrove extent and assess ecological changes over time (Robertson 
et al., 1991). Yet, field-based measurements are often constrained by 
difficult terrain, limited accessibility, and the inability to capture 
regional-scale variations, particularly in complex intertidal environ
ments (Giri, 2016). Deep learning methods help overcome key chal
lenges in mangrove interpretation by improving the discrimination of 
spectrally similar vegetation, enhancing boundary delineation in frag
mented coastal landscapes, and enabling more reliable detection of 
subtle ecological changes that traditional remote sensing approaches 
may overlook (Anees et al., 2025; Kirui et al., 2013; Mehmood et al., 
2025). Recently, there has been rapid development in using 
deep-learning-based algorithms for mangrove mapping based on coastal 
and wetland images. Xu et al. (2023) combined time series Landsat data 
and the MSNet semantic segmentation algorithm to obtain spatiotem
poral change information about mangrove coverages. Zhang et al. 
(2025) used high-resolution optical image data along with the DeepLab 

Fig. 1. A: Location of the Lantau Island. B: Tung Chung. C: Shui Hau.
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V3+ instance segmentation method to detect the mangrove area accu
rately. One of the advantages of the deep learning approach is that it can 
automatically extract hierarchical features from raw inputs without any 
human intervention, which reduces the requirement of hand-crafted 
features and enables fast and efficient model training (Zhao et al., 
2024). But semantic segmentation networks usually suffer low boundary 
accuracy than instance segmentation ones (Yin et al., 2022). Therefore, 
we choose the instance segmentation framework as our network struc
ture to achieve accurate detection results of mangroves in this paper.

Mask R-CNN is simple but effective end-to-end architecture that can 
simultaneously detect instances in images and generate high quality 
mask prediction maps for all detected instances (He et al., 2017), which 
makes it ideal for many remote sensing problems such as those dealing 
with complex land covers. Recently, Mask R-CNN has become popular 
for instance level object detection and segmentation on high resolution 
satellite images because it can joint optimize object localization and 
semantic boundaries (Han et al., 2022; Liu et al., 2022). Also, it shows 
promising results when applied on VHR dataset composed by VNIR 
bands with an accuracy higher than 91.4 % and an f-score greater than 
0.89 in the mangrove canopy segmentation task (Lassalle and De Souza 
Filho, 2022). Moreover, the mangrove communities on Lantau Island are 
relatively sparse and often occur in small (Zhang et al., 2025). Mask 
R-CNN treats each mangrove patch as an individual instance, enabling 
the model to preserve fine boundary details, discriminate between 
closely adjacent patches, and prevent the merging of spectrally similar 
yet spatially distinct vegetation groups (Carvalho et al., 2020; Yin et al., 
2022). All these reasons motivate us to choose Mask R-CNN for our 
mangrove delineation problem.

The reliable spatiotemporal description of mangroves is an impor
tant prerequisite for formulating appropriate management and conser
vation measures against environmental stresses (Wu et al., 2025). The 
launch of Sentinel-2 in 2015 provided us with free-of-charge, high 
spatial resolution(10 m), multi-spectral imaging every five days at 
global scale, which makes it suitable for investigating the dynamic 
change of small areas such as mangrove ecosystems (Phiri et al., 2020). 
Therefore, we use time series of Sentinel-2 Multi-Spectral Instrument 
(MSI) data combined with a deep learning-based instance segmentation 
network Mask Region Convolutional Neural Network (MaskR-CNN) to 

study the dynamics of mangroves on Lantau Island, Hong Kong from 
2016 to 2024.

On Lantau Island, the sediment supply is controlled mainly by local 
terrestrial input and nearshore hydrodynamics (Xiong et al., 2018). 
Sediment fluxes control both sediment transport and deposition pro
cesses, which affect mangroves’ distributions (Fanous et al., 2023; 
Krauss et al., 2014). In areas of relatively weak energy along coastlines, 
fine-grained sediments may be deposited on the intertidal zone or es
tuaries resulting from the accumulation of sediment during flooding 
cycles, causing elevating of substrate surface level for the expansion of 
mangroves towards seawards (Walsh and Ridd, 2008; Wolanski et al., 
2006). However, in areas of higher energy conditions, waves and tur
bulence cause erosion that inhibits seedlings establishment and prevents 
the colonization of mangroves (Mbense et al., 2016; Raw et al., 2019). 
Apart from hydrodynamic factors, sea-level rise has emerged as a key 
driver of landward retreat, particularly where vertical accretion fails to 
keep pace with rising water levels (Fanous et al., 2023; Gilman et al., 
2007). Moreover, extreme weather events such as typhoons have caused 
severe damage to mangrove canopies (Kauffman and Cole, 2010; Paling 
et al., 2008).

Thereafter, the analysis focuses on two representative mangrove 
stands—Shui Hau and Tung Chung—and aims to (1) assess the perfor
mance of the Mask R-CNN model in mangrove mapping through quan
titative accuracy metrics; (2) quantify spatiotemporal variations in 
mangrove extent in Shui Hau and Tung Chung from 2016 to 2024; (3) 
identify the primary environmental factors driving mangrove expansion 
and retreat in each region; and (4) compare the performance of instance 
segmentation (Mask R-CNN) with semantic segmentation models in 
delineating mangrove boundaries. Through this work, we seek to 
enhance understanding of small-scale mangrove dynamics and support 
the development of targeted conservation strategies, while also 
providing insights into the broader applicability of deep learning models 
for biophysical mapping in dynamic coastal systems.

Fig. 2. Workflow employed in the study.
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2. Materials and methods

2.1. Study area

Situated in southeastern China at the mouth of the Pearl River Delta, 
Hong Kong is a key component of the Greater Bay Area and hosts 
approximately 60 mangrove stands across six districts, including Lantau 
Island (Zhang et al., 2025). The study area focuses on Shui Hau and Tung 
Chung, two mangrove stands located on Lantau Island, the largest island 
in Hong Kong (Fig. 1). Lantau Island's coastal topography, characterized 
by a mix of mountainous terrain and flat intertidal zones, creates unique 
conditions for mangrove ecosystems. Both Shui Hau and Tung Chung are 
situated along Hong Kong’s western coastline and are subject to varying 
degrees of influence from the Pearl River Estuary. Shui Hau lies within a 
relatively enclosed embayment on southern Lantau Island, where hy
drodynamic exchange is weak (Fig. 1), whereas Tung Chung is located 
adjacent to the airport and experiences more complex tidal and hydro
dynamic conditions (Vorsatz et al., 2023; Wang et al., 2023). Despite 
hosting multiple mangrove species—including Kandelia candel, Aegi
ceras corniculatum, Avicennia marina, Bruguiera gymnorrhiza, Excoe
caria agallocha, and Acanthus ilicifolius—their mangrove patches 
remain small, fragmented, and characterized by simple community 
structures. Such ecological attributes have long been overlooked in 
traditional mangrove studies, which typically focus on larger and 
better-conserved stands (Tam et al., 1997).

2.2. Materials

This study utilized multiple remote sensing and auxiliary datasets, 
each serving different analytical purposes throughout the model 
training, validation, and mangrove dynamics assessment workflow 
(Fig. 2). A summary of all datasets is presented in Table 1. First, cloud- 
free Sentinel-2 MSI imagery (2021) was downloaded from Google Earth 
Engine (GEE) and used as the primary input for training the mangrove 
identification model (code:https://github.com/CousinRock/Download 
-S2-for-mangrovedetection.git). The mangrove label data were derived 
from the 2021 ESA WorldCover v2.0 product (ESA_WorldCover_v200). 
To account for terrain effects on mangrove distribution, the Copernicus 
DEM GLO-30 dataset was used to extract elevation information 
(Copernicus DEM GLO-30). To ensure label reliability, all training 
samples were visually inspected using 2021 Sentinel-2 imagery and 
high-resolution Google Earth imagery, and areas showing obvious in
consistencies were manually removed. In addition, the Global Mangrove 
Watch (GMW) dataset (1996–2020) was consulted as a long-term spatial 
reference to verify the stability and plausibility of mangrove distribution 
patterns (Bunting et al., 2022). For suspended sediment concentration 
(SSC) estimation, all available cloud-free Level-1 Landsat 8 OLI images 
over Lantau Island (2016–2024) were acquired from the USGS Earth 
Explorer platform (https://earthexplorer.usgs.gov/). Hydrodynamic 
and tidal conditions were characterized using ECMWF wave products 
(mean wave direction and significant wave height)(https://cds.climate. 
copernicus.eu) and sea level records from the Hong Kong Observatory 
(https://www.hko.gov.hk). In addition, three spectral indi
ces—Enhanced Vegetation Index (EVI), Land Surface Water Index 

(LSWI), and Mangrove Vegetation Index (MVI)—were calculated to 
enhance the spectral separability between mangrove and non-mangrove 
features. The formulas for calculating the three spectral indices are as 
follows: 

EVI = 2.5
NIR − RED

NIR + 6RED − 7.5BLUE + 1
(1) 

LSWI =
NIR − SWIR1
NIR + SWIR1

(2) 

MVI =
NIR − GREEN

SWIR1 − GREEN
(3) 

where RED, GREEN, BLUE, NIR, and SWIR1 respectively represent the 
pixel values of the red, green, blue, near-infrared, and short-wave 
infrared bands.

2.3. Methods

2.3.1. Mangrove identification model training

2.3.1.1. Input data preparation. The mangrove identification model 
(MIM) was established by adapting the Mask Region-based Convolu
tional Neural Network (Mask R-CNN), an instance segmentation 
framework that extends Faster R-CNN by integrating a parallel mask 
prediction branch for pixel-level segmentation alongside object detec
tion (Wang and He, 2022). Compared with semantic segmentation 
networks such as FCN, Mask R-CNN achieves higher boundary precision 
through the RoIAlign operation (Fig. 2), which eliminates the spatial 
quantization errors of traditional RoIPool and enables precise 
pixel-to-pixel alignment between input features and predicted masks. 
This operation significantly enhances localization accuracy, improving 
mask performance by 10–50 % under stricter metrics (He et al., 2017), 
and thus provides a clear advantage in detecting fine and irregular 
boundaries. In the context of mangrove ecosystems, where vegetation 
often occurs in fragmented, patchy structures interspersed with water 
and mudflats, such fine boundary discrimination becomes crucial (Wu 
et al., 2025; Xiong et al., 2024). Instance segmentation models like Mask 
R-CNN have demonstrated strong performance in these heterogeneous 
environments—Lassalle & De Souza Filho (2022) successfully applied 
Mask R-CNN to delineate mangrove canopy gaps with high accuracy (F1 
≥ 0.89)—indicating its robustness in distinguishing discrete mangrove 
patches and their boundaries within complex coastal mosaics. This ar
chitecture is well-suited for remote sensing applications, as it supports 
multi-channel inputs and large-scale geospatial analysis (Carvalho et al., 
2020). To streamline geospatial data processing, the study employed 
GeoAI, an open-source Python package designed to bridge AI and geo
spatial analysis through advanced machine learning tools (Wu, 2025). 
Input data consisted of Sentinel-2 MSI surface reflectance bands (blue, 
green, red, and near-infrared), supplemented by three spectral indices 
calculated using geemap (Wu, 2020): the Enhanced Vegetation Index 
(EVI) to isolate vegetation from soil and water (Huete et al., 2002), and 
the Land Surface Water Index (LSWI) to highlight water-rich features 
like mangroves (Chandrasekar et al., 2010), and the Mangrove Vegeta
tion Index (MVI) to distinguish mangroves from other land covers 
(Baloloy et al., 2020), along with elevation data from the Copernicus 
DEM GLO-30. EVI can effectively separate vegetation from soil and 
water, providing advantages for vegetation detection and feature 
extraction. LSWI is sensitive to the liquid water content in vegetation 
and soil, highlighting water-rich areas such as mangroves. MVI is spe
cifically designed to distinguish mangroves from non-mangrove vege
tation and other non-vegetated surfaces, enhancing classification 
accuracy in complex coastal landscapes (Xiong et al., 2024). Although 
the ESA WorldCover v2.0 product provides globally consistent 
mangrove masks, all training samples and test regions were visually 
inspected using Sentinel-2 MSI imagery from 2021 and high-resolution 

Table 1 
Summary of datasets used in this study.

Dataset Source Time period

Sentinel-2 MSI GEE 2016–2024
ESA WorldCover v2.0 GEE 2021
Copernicus DEM GLO-30 GEE 2010–2015
Landsat 8 OLI USGS 2016–2024
ECMWF wave data ECMWF 2016–2024
Sea level data (Shek Pik) Hong Kong Observatory 1998–2024
Google earth Imagery Google earth 2021
Global mangrove watch Zenodo 1996–2020
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Google Earth imagery to ensure temporal consistency with the label 
data. The Global Mangrove Watch dataset (1996–2020) was addition
ally consulted as a stable long-term spatial reference to contextualize 
mangrove distribution patterns. Areas exhibiting evident misclassifica
tion in the 2021 imagery were removed prior to training. Furthermore, 
the performance of the MIM was evaluated using independent 
high-resolution external datasets rather than relying solely on the 
WorldCover labels, ensuring that the validation metrics are not affected 
by potential label uncertainties.

2.3.1.2. Training parameters and fine-tuning strategy. For model training, 
we selected cloud-free images from ten global regions and merged them 
before tiling into 256 × 256 pixel tiles, ultimately generating 14,342 
image-label pairs (Fig. 3A). The dataset was split with 80 % for training 
and 20 % for validation. The model was trained using a ResNet-50 
backbone integrated with a Feature Pyramid Network (FPN). Training 
was performed with a batch size of 4 using stochastic gradient descent 
(SGD) optimization, and an initial learning rate schedule that decayed 
by a factor of 0.8 every five epochs. The initial mangrove identification 
model was trained using Mask R-CNN for 45 epochs with a learning rate 
of 0.0001. Subsequent fine-tuning involved three phases. During all fine- 
tuning stages, the batch size remained 4 and the same learning rate 
decay schedule was maintained. The first phase increased the learning 
rate to 0.001 and training for an additional 50 epochs on the original 
dataset; second, keeping the epoch count and learning rate constant 
while expanding the dataset with cloud-free images from additional 
regions (adding 3736 images with corresponding labels); and finally, 
maintaining the learning rate at 0.001 while increasing the number of 
training epochs to 60 for further optimization. The model achieving the 
highest IoU across all training and fine-tuning phases was selected as the 
final mangrove identification model (Fig. 3B).

2.3.2. Mangrove dynamic analysis

2.3.2.1. Shoreline change calculation. In order to quantitatively analyze 
the changes in shoreline position during our research area within the 
study period, we applied the Digital Shoreline Analysis System (DSAS) 
(developed by USGS) which is one of the tools that are integrated into 
ArcGIS. It has been widely adopted worldwide because it offers many 
statistical methods based on multi-time shoreline data. In this paper, we 
use the historical mangrove shoreline information extracted via remote 

sensing as input to DSAS (Wu et al., 2025). Then, among these statistics, 
linear regression rate (LRR)was chosen to be the main metric to calcu
late the long-term shoreline change trends due to its wide application 
and high accuracy. The LRR refers to the slope coefficient calculated 
with Least Square Method fitting all shoreline points along each transect 
into a straight line, so it can represent the overall trend of shoreline 
evolution during the whole timespan (Himmelstoss et al., 2021). If the 
LRR <0 then there will exist an erosion tendency at the shoreline, 
meaning that the mangrove shorelines tend to move towards inland. On 
the contrary if the LRR>0 means that the shoreline is moving towards 
sea direction due to deposition process. To determine the possible im
pacts of mangrove forests in comparison with sea level rise, the average 
vertical sediment accumulation (AVSA) rate was calculated using the 
following formula (Xiong et al., 2024): 

AVSA = Vtanθ (4) 

where V is the average accretion rate of shorelines, and θ is the average 
slope in the Shui Hau and Tung Chung obtained from DEM.

2.3.2.2. Vegetation health assessment. The Transformed Chlorophyll 
Absorption in Reflectance Index (TCARI) can reflect the change of 
chlorophyll contents and photosynthesis activities of plants effectively, 
thus it serves well as a proxy variable for vegetation health status 
(Sharifi, 2020). In this study, the LandTrendr (LT) approach based on 
Sentinel-2 data has been used to extract disturbance pattern at different 
time scales from mangroves lost or gained area by analyzing spatio
temporal trajectory of spectral indices to determine whether there were 
any abrupt or slow changes (Chen et al., 2025). LT, as a temporal seg
mentation algorithm designed for time-series remote sensing data, 
models pixel-level spectral trajectories as a series of connected linear 
segments. This enables the extraction of both sudden disturbances and 
long-term subtle changes in vegetation dynamics (Kennedy et al., 2010). 
When combined with TCARI, LT first identifies zones of mangrove 
disturbance or recovery through spectral trajectory segmentation. 
TCARI’s sensitivity to chlorophyll content is then used to infer vegeta
tion health within these LT-identified segments: negative TCARI trends 
reflect declines in chlorophyll and degraded vegetation health, whereas 
positive trends indicate recovery or improved physiological condition. 
By combining the trend of TCARI with LT results, we could assess the 
dynamic variation of vegetation vigor and health condition over man
groves. The formula for calculation of TCARI is shown below: 

Fig. 3. Model training and dataset preparation. A: Training dataset samples distribution. B: Optimization of the mangrove identification model.
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TCARI = 3[((EDGE − RED) − 0.2)(EDGE
− GREEN)(EDGE/RED)] (5) 

where RED, GREEN, and EDGE respectively represent the pixel values of 
the red, green, red edge bands.

2.3.3. Remote sensing SSC estimation model
To estimate suspended sediment concentration (SSC) in the Shui Hau 

and Tung Chung, we adopted the Semi-Empirical Radiative Transfer 
(SERT) model, which has been validated for turbid estuarine waters (Luo 
et al., 2022). Previous publications (Pan et al., 2018; Tang et al., 2019) 
have successfully demonstrated the potential of using the SERT model in 
turbid waters. Due to the small quantity of high-quality cloudless 
Landsat images available each year, and this study analyzes and dis
cusses multi-year SSC changes, and do not focus on short time scale 
processes. Therefore, we averaged the SSC in the Shui Hau and Tung 
Chung from the Landsat images (time interval of every four years) to 
obtain the interannual time series SSC distribution. The SSC was esti
mated using Eq. (6) as follows: 

SSC =
2 × α × Rrs

β × (α − Rrs)
2 (6) 

where SSC is the suspended sediment concentration in g/L, Rrs is the 
atmospherically corrected remote sensing reflectance in sr− 1, and α, β 
are empirical coefficients specific to Landsat-8 OLI Band 4 (655 nm): α =
0.0763, β = 11.5306 (Luo et al., 2022).

2.3.4. Precision assessment
In remote sensing data analysis, ensuring the accuracy and reliability 

of the results is of paramount importance (Wu et al., 2025). To validate 
the annual mangrove mapping results derived using the MIM, we 
implemented a comprehensive and standardized accuracy assessment 
procedure. Specifically, Sentinel-2 MSI imagery from 15 representative 
regions was analyzed using the MIM. The resulting mangrove 

segmentation were compared with the mangrove area data from the ESA 
dataset to assess spatial consistency and accuracy. Furthermore, to 
enhance the validation process, visual verification was performed using 
supplementary datasets comprising Google Earth imagery from 2018 to 
2020, the LREIS Global Mangrove dataset (2018–2020) (Xiao et al., 
2021), and the Land Utilization in Hong Kong (LUHK) mangrove dataset 
covering the same period. This multi-source validation approach en
hances the credibility and robustness of the results. To comprehensively 
evaluate the performance of the MIM, both pixel-level and area-level 
metrics were employed. During model training and selection, the IoU 
served as the primary segmentation metric to ensure accurate mask 
learning (Fig. 3B). For the final validation stage, area-based accuracy 
measures were further introduced to assess the agreement between 
predicted and reference mangrove extents at the regional scale. Specif
ically, the mean absolute percentage error (MAPE) and root mean square 
error (RMSE) were calculated between the predicted and reference 
mangrove extents. Smaller MAPE indicates better modeling results, and 
smaller RMSE denotes higher prediction accuracies. These accuracy 
criteria are calculated as (Zheng et al., 2016): 

MAPE =
1
n
∑n

i=1

⃒
⃒
⃒
⃒
yi − yʹ

i
yi

⃒
⃒
⃒
⃒ ∗ 100% (7) 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1

(
yi − yʹ

i
)2

√

(8) 

where, n is the number of samples, and yi and yi
' refer to the measured 

and predicted values for the i th sample.

3. Results

3.1. Validation of MIM

The validation of the MIM was conducted using a multi-source 

Fig. 4. Comparison of mangrove distribution maps from various sources.
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approach, incorporating Sentinel-2 MSI imagery from 15 diverse regions 
(Fig. 5A) and high-resolution validation datasets for the Shui Hau and 
Tung Chung from 2018 to 2020, including Google Earth imagery, the 
LREIS Global Mangrove dataset (2018–2020), and LUHK mangrove 
raster grid (Fig. 4). However, visual inspection of high-resolution Google 

Earth imagery in the Shui Hau area reveals fragmented and dying 
mangrove patches near the seaward edge (Fig. 4) that are not identified 
by the LREIS and LUHK datasets. These 15 validation regions are stra
tegically distributed across global mangrove biomes, encompassing 
North America, West Africa, South Asia, and Southeast Asia and 

Fig. 5. Validation of MIM across global mangrove regions. A: Locations of 15 validation regions. B: Comparison between predicted and reference mangrove areas. 
C–E: Representative segmentation examples in different geomorphic settings, illustrating that the predicted mangrove distributions closely match the reference 
spatial patterns (white represents reference mangrove extent; yellow indicates predicted results).
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Oceania, as indicated on the world map (Fig. 5A). They span a diverse 
range of geomorphological settings, including estuaries, deltas, and 
bays, ensuring that the model is tested under heterogeneous environ
mental conditions. Comparative analysis revealed strong agreement 
between MIM-derived mangrove segmentation and ESA reference 
datasets (Fig. 5C-E), with both datasets mangrove area closely aligned 
along the 1:1 line (Fig. 5B), demonstrating the model's robust spatial 
consistency. In particular, the model accurately captured both compact 
and fragmented mangrove distributions across varied coastal land
scapes. For instance, in deltaic environments (Fig. 5C1, C5, E2), the MIM 
preserved the intricate boundary structures and narrow tidal creeks, 
while in narrow estuarine channels (Fig. 5C2, D4), the segmentation 
results remained continuous and coherent. Quantitative assessment 
yielded a mean absolute percentage error (MAPE) of 6.91 % and a root 
mean square error (RMSE) of 0.04 × 104 ha for mangrove area esti
mation, indicating high prediction accuracy (Fig. 5B).

External datasets were used as complementary references. These 
datasets provide high-resolution or standardized baselines, which can 
help contextualize and cross-check the model outputs. While some 
fragmented or degraded mangrove patches may not be captured by these 
datasets, they still offer useful guidance for evaluating the general 
spatial distribution of mangroves. Together, the external datasets and 
model predictions provide a more comprehensive assessment of 
mangrove extent. When benchmarked against existing mangrove studies 
in the Shui Hau and Tung Chung regions, the spatial distribution of 
mangroves extracted in this research shows high consistency with the 
coastal ecological unit characterization of Shui Hau Village presented 
(Ho and Chung, 2025). Meanwhile, the mangrove distribution ranges in 
both Shui Hau and Tung Chung can be spatially matched with the 
mangrove sample points derived from ultra-high-resolution imagery 
(Zhang et al., 2025), providing direct localized validation for the 
model’s applicability and reliability in regional mangrove mapping. This 
comprehensive validation, integrating global, regional, and 
very-high-resolution satellite references, conclusively demonstrates the 
model's effectiveness in mangrove identification, providing a reliable 
foundation for subsequent spatiotemporal analysis of Shui Hau and 
Tung Chung mangrove ecosystems. The model's strong performance 
ensures accurate detection of both subtle and pronounced changes in 
mangrove distribution patterns over time.

3.2. Variations in mangrove area and shoreline dynamics

To accurately characterize the mangrove change trends in Shui Hau 
and Tung Chung, we first delineated the most stable core regions from 
the annual mangrove identification results over 2016–2024 as the focal 
study areas (Fig. 6). Given that the mangrove patches in these sites are 
spatially small and the regional-scale RMSE of the MIM results is 0.04 ×
10⁴ ha (Fig. 5B), the analysis focused on stable mangrove zones to 
minimize classification uncertainty caused by spatial resolution limita
tions. To ensure that the detected trends represented genuine ecological 
change rather than model artifacts, historical Google Earth imagery was 
visually interpreted, and only the core regions that remained consis
tently recognizable across years were retained for detailed analysis. 
From 2016 to 2024, the mangrove ecosystems in Shui Hau and Tung 
Chung exhibited markedly divergent trajectories in both area and 
shoreline dynamics (Fig. 6A1–B1). Specifically, the mangrove area in 
Shui Hau demonstrated a continuous decreasing trend, shrinking from 
0.77 ha in 2016 to just 0.39 ha by 2024—an average annual loss of 
approximately 0.048 ha (Fig. 6A1). In contrast, Tung Chung experienced 
a gradual increase in mangrove area, expanding from 3.28 ha in 2016 to 
3.59 ha in 2024, corresponding to a mean annual increase of 0.059 ha 
(Fig. 6B1).

However, mangrove shoreline-level assessments revealed more 
nuanced patterns of mangrove change in both regions. In Shui Hau, 
shoreline dynamics were dominated by erosion, with eroding segments 
accounting for 92 % of the total mangrove shoreline count while 
accretional segments represented only 8 % (Fig. 6A2-A5). Conversely, 
Tung Chung exhibited a predominantly accretional trend, where 
expanding shoreline segments constituted 72 % of the total count, 
significantly outweighing eroding segments at 28 % (Fig. 6B2-B5). The 
contrasting patterns were further reflected in the spatial dynamics of 
mangrove shorelines. Along the Shui Hau coast, the mangrove shoreline 
predominantly retreated between 2016 and 2024, indicative of wide
spread erosion (Fig. 6A6). The average shoreline retreat rate was − 3.07 
m/yr, with peak erosion reaching up to 6.41 m/yr. In contrast, Tung 
Chung's mangrove shoreline exhibited signs of progradation in several 
sectors, with an average expansion rate of 0.85 m/yr and a maximum 
seaward advance of 4.87 m/yr (Fig. 6B6). In comparison to the Tung 
Chung, the Shui Hau is undergoing more severe mangrove degradation 

Fig. 6. Spatiotemporal dynamics of mangrove area and shoreline change in Shui Hau and Tung Chung (2016–2024). A1–B1: Temporal changes in mangrove area. 
A2–A6 and B2–B6: Erosion and accretion segments along the mangrove shoreline and spatial distribution of shoreline movement rates.

R. Wu et al.                                                                                                                                                                                                                                      Trees, Forests and People 23 (2026) 101146 

8 



and shoreline erosion. Notably, the contrasting trends of mangrove loss 
in Shui Hau and gain in Tung Chung are not random, but are likely 
driven by differences in local environmental conditions that govern 
mangrove growth and survival, including variations in the intensity of 
hydrodynamic forces acting on the shorelines, the availability of sedi
ment for substrate accretion, and potential anthropogenic disturbances 
that may affect habitat suitability.

3.3. Example segmentation results

As expected, the LT algorithm effectively captured abrupt distur
bance events, including both mangrove loss and expansion, as well as 
changes in vegetation health status as indicated by the TCARI index 
(Fig. 7). In Shui Hau, within areas that experienced mangrove loss, the 
LT outputs revealed a consistent decline in TCARI values over time, 
reflecting a gradual deterioration in vegetation health. Specifically, both 
subregions (labeled 1 and 2) exhibited decreasing TCARI trends from 
2016 to 2024 (Fig. 7A), consistent with the observed retreat of 
mangrove area. In contrast, mangrove gain regions in Tung Chung 
showed two distinct temporal patterns (Fig. 7B). In subregion 1, 

mangroves expanded seaward from 2016 to 2024 (Fig. 6B7), accom
panied by a steady increase in TCARI values, suggesting progressive 
improvement in vegetation vigor. In subregion 2, mangroves exhibited 
expansion between 2016 and 2018, followed by relatively stable 
coverage from 2018 to 2024. Correspondingly, TCARI values increased 
during the early period but plateaued thereafter, indicating a stabiliza
tion in vegetation health (Fig. 7B).

4. Discussion

4.1. Comparing different models

To the best of our knowledge, this study represents the first appli
cation of deep learning–based instance segmentation using Sentinel-2 
MSI imagery for mangrove mapping on Lantau Island. To benchmark 
the performance of the Mask R-CNN model, additional mod
els—including Unet, FPN, DeepLabV3, and DeepLabV3+—were trained 
using the same dataset. Importantly, the semantic segmentation models 
were deliberately trained until their validation IoU exceeded that of 
Mask R-CNN. IoU, although an important metric, has inherent 

Fig. 7. Mangrove change and vegetation health analysis using LandTrendr and TCARI index. A: Temporal trends of vegetation decline in Shui Hau. B: Vegetation 
recovery and stabilization patterns in Tung Chung.
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limitations in evaluating segmentation performance—particularly in its 
inability to capture false positives, boundary accuracy, and fine-scale 
structural preservation (Zhang et al., 2022). Therefore, we include 
additional assessment metrics to more comprehensively evaluate model 
effectiveness. When evaluated across multiple metrics, Mask R-CNN 
demonstrated competitive and robust performance across multiple 
metrics, achieving an overall accuracy (OA) of 94.34 %, a precision of 
80.15 %, and an F1-Score of 85.59 %. Notably, the precision of Mask 
R-CNN exceeded that of Unet by 13.57 %, FPN by 8.88 %, DeepLabV3 by 
6.16 %, and DeepLabV3+ by 8.53 %. These results suggest that while 
other models may offer marginally higher IoU, Mask R-CNN excels in 
correctly identifying mangrove pixels with fewer false positives. For 
non-mangrove pixels, Mask R-CNN also demonstrated superior perfor
mance, achieving a precision of 98.11 %, a recall of 94.9 %, an F1-Score 
of 96.48 %, and an IoU of 93.2 %. Compared to DeepLabV3, Deep
LabV3+, FPN, and Unet, Mask R-CNN's non-mangrove F1-Score was 
higher by 1.02 %, 1.54 %, 1.60 %, and 2.70 %, respectively, while its 
recall exceeded the others by 2.27 %–5.52 %. These metrics indicate that 
Mask R-CNN effectively minimizes false negatives for non-mangrove 
areas, ensuring robust classification across both mangrove and 
non-mangrove classes (Table 2).

Examples of segmentation results across various models (Fig. 8A-D) 
further highlight the spatial advantages of the Mask R-CNN model. Four 
representative sites with distinct environmental settings were selected 
for analysis: an estuary with weak tidal dynamics, a bay enclosed by 
urban development, a delta where mangroves are clearly separated from 

terrestrial vegetation, and an estuary where mangroves are intermixed 
with non-mangrove vegetation. When compared to the ground-truth 
labels, the Mask R-CNN model consistently outperformed other 
models, particularly in boundary delineation and fine-detail preserva
tion. For instance, Unet exhibited obvious misclassifications in the es
tuary with weak tidal forces (Fig. 8A), where non-mangrove areas were 
incorrectly labeled as mangroves. Similarly, in the mixed estuarine 
environment (Fig. 8D), Unet, FPN, DeepLabV3, and DeepLabV3+ all 
failed to accurately capture fine-scale mangrove structures and frag
mented patches. In contrast, Mask R-CNN effectively mitigated these 
issues, delivering more precise and detailed segmentation, especially in 
complex, heterogeneous, or linear mangrove habitats.

Nevertheless, historical mangrove classification using Sentinel im
agery still presents inherent challenges due to complex edge structures, 
fragmented habitat distributions, dynamic intertidal conditions, and 
varying image quality. These factors demand robust models capable of 
accurate boundary delineation and class discrimination. Although the 
10 m resolution of Sentinel-2 MSI is adequate for regional mangrove 
mapping, it imposes constraints on detecting small or narrowly 
distributed patches. Seedling clusters and fine-edge features are sus
ceptible to mixed-pixel effects, which may lead to underestimation of 
their extent or to boundary misclassification. This spatial limitation can 
also increase confusion in areas where mangroves exhibit spectral sim
ilarity with adjacent vegetation. While the Mask R-CNN mitigates many 
of these issues by refining object boundaries at the instance level, 
challenges persist, particularly in delineating sparsely distributed 
mangrove stands and distinguishing them from spectrally similar plant 
communities. (Fig. 8). Future improvements could incorporate radar 
backscatter data from historical Sentinel-1 imagery to extract comple
mentary structural indices and texture features. Moreover, refining 
feature fusion strategies between shallow and deep network layers may 
enhance the model's ability to detect subtle and complex mangrove 
patterns (Zhang et al., 2025). By addressing these aspects, the model 
could achieve more reliable classification performance and improved 
adaptability in ecologically heterogeneous and tidally influenced 
environments.

4.2. Impacts of suspended sediment concentration

The growth and maintenance of mangroves are highly dependent on 
sediment (Phan et al., 2015; Swales et al., 2019), which forms the 
physical foundation for mangrove colonization, vertical accretion, and 

Table 2 
Accuracy comparison of different mangrove segmentation models.

Unet FPN DeepLabV3 DeepLabV3+ MaskR- 
CNN

OA 0.9031 0.9192 0.9281 0.9202 0.9434
Precision 0.6658 0.7127 0.7399 0.7162 0.8015
Recall 0.945 0.936 0.9358 0.9337 0.9184
F1-Score + 0.7812 0.8092 0.8264 0.8106 0.8559
IoU 0.6409 0.6796 0.7041 0.6816 0.7482
Non-Mangrove 

precision
0.9864 0.9846 0.9847 0.9841 0.9811

Non-Mangrove 
recall

0.8938 0.9155 0.9263 0.9171 0.949

Non-Mangrove 
F1-Score

0.9378 0.9488 0.9546 0.9494 0.9648

Non-Mangrove 
IoU

0.8829 0.9025 0.9132 0.9037 0.932

Fig. 8. Comparative segmentation results using different deep learning models. A–D: Representative sites with distinct environmental settings: A) An estuary with 
weak tidal dynamics; B) A bay enclosed by urban development; C) A delta where mangroves are clearly separated from terrestrial vegetation; D) An estuary where 
mangroves are intermixed with non-mangrove vegetation.
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overall habitat stability. Sediment inputs not only provide essential 
nutrients and suitable substrates for seedling establishment but also 
contribute to surface elevation gains that counteract the impacts of 
sea-level rise (Wu et al., 2025). Adequate and continuous sediment 
supply enhances root anchorage, promotes sediment trapping by vege
tation, and supports the long-term seaward progradation of mangroves 
(Long et al., 2025). An analysis of suspended sediment concentration 
(SSC) in Shui Hau and Tung Chung revealed contrasting trends between 
the two sites. In Shui Hau, SSC increased from 0.028 g/L in 2016 to 
0.032 g/L in 2024, while in Tung Chung, SSC rose from 0.027 g/L to 
0.065 g/L over the same period (Fig. 9). Notably, regions with higher 
SSC in both bays largely overlapped with zones of active mangrove 
growth (Fig. 10). Interestingly, after 2020, SSC levels in both Shui Hau 
and Tung Chung showed different degrees of decline. In Shui Hau, SSC 
dropped from 0.052 g/L in 2020 to 0.032 g/L in 2024, representing a 

37.68 % decrease. In Tung Chung, SSC decreased from 0.08 g/L to 0.065 
g/L, a reduction of 19.51 %. The pronounced rise in SSC before 2020 was 
likely associated with large-scale reclamation activities related to the 
construction of the Hong Kong International Airport’s (HKIA) third 
runway. During the reclamation phase, extensive dredging and sediment 
disturbance introduced substantial quantities of suspended particles into 
the adjacent coastal waters, temporarily elevating SSC in both Tung 
Chung and Shui Hau. After the completion of reclamation works around 
2020, sediment input to the bays decreased, leading to a gradual re
covery of SSC toward pre-construction levels (Fromant et al., 2021; 
Wang et al., 2023). A reduction in SSC results in diminished sediment 
deposition on intertidal substrates, which directly weakens the vertical 
accretion capacity of mangrove habitats. As mangrove root systems rely 
on continuous sediment burial for anchorage and structural stability, 
reduced sediment supply leads to weaker root support, making 

Fig. 9. Temporal trends in suspended sediment concentration in Shui Hau and Tung Chung from 2016 to 2024.

Fig. 10. Estimation of suspended sediment concentration distribution in Shui Hau and Tung Chung from 2016 to 2024.
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mangroves increasingly susceptible to erosion and physical disturbance 
(Wang et al., 2025). Meanwhile, Shui Hau experienced significant 
mangrove loss in the seaward region (subregion 2) between 2018 and 
2024 (Fig. 7A), with a continuous decline in TCARI values indicating 
deteriorating vegetation health. In contrast, although Tung Chung’s 
subregion 2 was disturbed after 2018, TCARI values plateaued rather 
than continued to rise, suggesting that the decline in SSC may have 
limited further improvements in vegetation health (Fig. 7B).

Previous studies have shown that sediments can provide space for 
mangrove colonization and expansion (Wu et al., 2025). For instance, 
substantial sediment deposition at the Amazon River estuary increased 
the mangrove area by over 700 km² within 12 years (Nascimento et al., 
2013). Similarly, sediments delivered by the Ganges and Brahmaputra 
Rivers promoted vertical accretion, contributing to coastal stabilization 
in response to postglacial sea-level rise (Wilson and Goodbred, 2015). 
Therefore, when SSC decreases, the physical environment supporting 
mangrove development naturally diminishes, leading to corresponding 
declines in both mangrove health and spatial extent.

4.3. Impacts of ocean dynamics

Mangroves growing in intertidal zones with shallow coastal waters 
are highly susceptible to wave dynamics (Xie et al., 2022). Persistent 
wave action can erode shorelines, destabilize substrates, and expose 
mangrove root systems, ultimately leading to mangrove mortality and 
landward retreat (Wang et al., 2024). Wave direction and SHW analyses 
for both Shui Hau and Tung Chung sites reveal that waves predomi
nantly approach from the west to east-northeast direction (Fig. 11B–C). 
However, a striking contrast exists between the two sites in terms of 
wave energy intensity. As shown in Fig. 11B, Shui Hau faces intense 
wave energy: only 10.1 % of SHW values are low (0–0.2 m), while 52.5 
% fall in the 0.2–0.5 m range and 31.1 % in the 0.5–0.8 m range. 
Notably, 6.3 % of waves exceed 0.8 m in height. Field observations at 
Shui Hau reveal exposed air roots of mangroves (Fig. 12A) and stands of 
mangroves in a dying state (Fig. 12C). In contrast, Tung Chung exhibits 
much calmer conditions, with 72.7 % of wave heights below 0.2 m, 27.1 
% falling between 0.2–0.5 m, and only 0.2 % between 0.5–0.8 m. 
Importantly, no waves exceeding 0.8 m were recorded at Tung Chung 
(Fig. 11B–C). Field observations in Tung Chung show the presence of 
newly established mangrove seedlings expanding seaward (Fig. 12B, 

Fig. 11. A: Daily wave heights of the Shui Hau and Tung Chung. B-C: Wave characteristics of the Shui Hau and Tung Chung.
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Fig. 12D). The persistent influence of high-energy waves at Shui Hau is 
likely a major driver of extensive landward mangrove retreat, reflected 
in the high shoreline erosion rate of − 3.37 m/yr, compared to a 
significantly lower rate of − 0.47 m/yr at Tung Chung (Fig. 6A6–B6).As 
shown in Fig. 11A, both sites experienced a marked spike in SHW in 
2018, where Shui Hau reached 3.2 m, and Tung Chung reached 1.74 m, 
coinciding with the timing of a disturbance observed in Tung Chung’s 
subregion 2. Following this event, TCARI values in that area plateaued, 
suggesting that wave-induced stress may have halted further improve
ments in vegetation condition (Fig. 7B).

It is widely acknowledged that rising sea levels driven by global 
warming pose a significant threat to mangrove ecosystems (Alongi, 
2015). Historical records have documented localized and regional ex
tinctions of mangrove forests, primarily triggered by abrupt and rapid 
sea-level rise events (Cazenave et al., 2014). On Lantau Island, the Shek 

Pik tide gauge station provides the longest continuous record of sea 
level, offering valuable insights into long-term coastal dynamics. Ac
cording to measurements of mean sea level trends from this station, sea 
levels at both Shui Hau and Tung Chung have exhibited a relatively 
stable pattern over the past nearly three decades (Fig. 13). The calcu
lated rate of mean sea-level rise is 0.3 mm/yr, indicating a slow and 
stable change over time. Additionally, the average vertical sediment 
accumulation rates, derived from the mean slope of the DEM data, were 
12.36 mm/yr at Tung Chung and 3.84 mm/yr at Shui Hau, both of which 
far exceed the rate of sea-level rise. This suggests that mangroves in 
these two regions are currently not under threat from sea-level rise. 
Although the long-term sea-level record indicates a stable and slow rate 
of rise for the past 27 years (Fig. 13), it should be acknowledged that 
future accelerations in regional sea-level rise cannot be fully ruled out. 
Moreover, tide-gauge data represent relative sea level at a fixed point 

Fig. 12. Photographs of the mangrove sites in Shui Hau and Tung Chung, taken in February 2025.

Fig. 13. Sea level rise and its simple linear regression analysis, 1998–2024.
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and may not capture short-term extremes or localized subsidence effects. 
Therefore, while current trends suggest limited risk, continued moni
toring remains essential.

4.4. Dataset discrepancies and segmentation challenges of the MIM

The visual comparison reveals evident discrepancies between the 
MIM-derived results and the LREIS Global Mangrove dataset 
(2018–2020) as well as the LUHK dataset in the Shui Hau area, partic
ularly regarding fragmented and dying mangrove patches (Fig. 4). Such 
inconsistencies are not uncommon among high-resolution mangrove 
datasets (Zhang et al., 2025), largely due to mixed pixel effects and 
insufficient spatial resolution. To verify the accuracy of our MIM results, 
we conducted field observations along the mangrove zones delineated 
by the LREIS dataset. The field survey confirmed that most of the areas 
classified as mangrove by LREIS in Shui Hau were in fact non-mangrove 
vegetation rather than true mangroves (Fig. 14A). Moreover, the LUHK 
dataset aggregated mangrove and swamp vegetation into a single class 
and left portions of the Shui Hau coastal zone unmapped. In contrast, 
MIM accurately delineated fragmented mangrove patches that corre
sponded well with ground photographs from Google map acquired in 
2020 (Fig. 14B), effectively capturing the spatial heterogeneity of these 
small patches. By leveraging multi-spectral Sentinel-2 imagery, eleva
tion data, and the instance segmentation capability of Mask R-CNN, 
MIM achieves pixel-level boundary precision and enhanced discrimi
nation of sparse mangrove assemblages. This improvement is particu
larly evident in ecologically complex zones, where conventional 
semantic segmentation or low-resolution global datasets struggle to 
identify narrow and fragmented patches. This capability is crucial for 
establishing a continuous, temporally consistent mangrove monitoring 
framework that can support long-term assessments of degradation and 
recovery dynamics across Hong Kong’s coastal wetlands.

Despite these strengths, several segmentation challenges were 
observed in vegetation-complex environments. As shown in Fig. 8, 
misclassifications occasionally occurred in transitional zones where 
mangroves co-exist with saltmarsh plants or low shrubs that exhibit 
similar spectral characteristics. Shadows, tidal water influence, and 
mixed-pixel effects further reduced separability along fine boundaries, 
resulting in slight over- or under-segmentation in some cases. Small and 
sparsely distributed seedling clusters were also difficult to detect 

consistently due to their limited canopy size relative to the 10 m 
Sentinel-2 resolution (Fig. 4). In addition, the use of the 30 m Copernicus 
DEM introduces an inherent scale mismatch with the 10 m Sentinel-2 
imagery. Although elevation varies gradually across coastal landscapes 
and can still provide meaningful low-frequency topographic context 
(Fereshtehpour et al., 2024), the coarser DEM resolution may limit the 
model’s ability to capture fine-scale elevation differences along narrow 
tidal flats or embankments. This limitation suggests that future work 
could benefit from incorporating higher-resolution DEM or 
LiDAR-derived elevation data to further improve boundary delineation 
in complex micro-topographic environments.

Beyond methodological considerations, the spatial patterns identi
fied by the MIM also hold direct relevance for mangrove management. 
Areas exhibiting persistent shoreline retreat or negative vegetation 
trends can serve as priority zones for targeted restoration or sediment 
supplementation. Conversely, regions showing natural recovery may 
provide suitable reference sites for informing restoration design and 
evaluating conservation effectiveness. These insights can assist man
agers in allocating resources and developing adaptive strategies to 
safeguard mangrove resilience under ongoing environmental change.

5. Conclusions

By integrating deep learning, shoreline change modeling, SSC esti
mation, and vegetation health assessment, this study offers a compre
hensive framework for long-term mangrove monitoring under data- 
scarce and morphologically complex conditions. The main findings 
can be shown as follows: 

1. We established a high-precision mangrove identification model by 
applying the Mask R-CNN framework with Sentinel-2 imagery, 
achieving a MAPE of 6.91 % and outperforming semantic seg
mentation models (e.g., Unet, DeepLabV3+) in delineating frag
mented mangrove patches with complex boundaries.

2. The two representative mangrove stands on Lantau Island exhibited 
markedly divergent trends during 2016–2024. At Shui Hau, 
mangrove area experienced continuous decline from 0.77 ha to 0.39 
ha, representing a substantial reduction of 49 %, accompanied by 
shoreline retreat at an average rate of 3.07 m/yr, indicating severe 
erosional degradation. In striking contrast, Tung Chung 

Fig. 14. A: Field survey route and ground photographs along the shooting path in the Shui Hau. B: Comparison between MIM-delineated mangrove patches and 
corresponding Google map images acquired in 2020 (from Google map).
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demonstrated steady mangrove expansion from 3.28 ha to 3.59 ha 
(9.5 % increase), with shoreline progradation occurring at 0.85 m/ 
yr, reflecting favorable developmental conditions.

3. The spatial divergence in mangrove dynamics between these two 
sites was primarily governed by distinct hydrodynamic and sedi
mentary regimes. At Shui Hau, high wave exposure coupled with 
declining suspended sediment concentration (SSC) contributed to 
habitat fragmentation and exacerbated shoreline erosion. In 
contrast, Tung Chung benefited from more moderate wave regimes 
and favorable sediment dynamics, which provided stable sedimen
tary substrates facilitating natural mangrove expansion. This striking 
contrast underscores the critical control of wave-sediment coupling 
processes on mangrove succession patterns.

The results underscore the importance of high-resolution historical 
mapping in supporting adaptive conservation strategies. For future 
management, targeted restoration efforts should prioritize erosion- 
prone areas such as Shui Hau, while maintaining natural expansion in 
regions like Tung Chung. Community engagement and the protection of 
sediment delivery pathways will be key to enhancing mangrove resil
ience against anthropogenic and climatic pressures.
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