唐剑武

职称: 
教授
研究专长: 
湿地碳氮循环的观测、实验和模型
Email: 
jwtang@sklec.ecnu.edu.cn
教育经历: 
北京大学学士
北京大学硕士
University of California at Berkeley 博士
个人简介: 
北京大学学士、硕士,美国加州大学伯克利分校博士。曾任美国西北大学助理教授,美国芝加哥大学海洋生物研究所研究员。
 
长期从事全球碳循环研究、全球变化生态学和湿地生态学研究,多次开拓性地提出了碳循环研究的新方法(比如碳通量测量新方法、叶绿素荧光测量等)并更新生态学理论,并将碳循环的理论应用于固碳减排管理和政策。最近几年,致力于海岸带湿地和海洋蓝色碳汇的概念、理论、方法及在生态修复和服务于碳中和的应用。
 
已在PNAS, Nature 子刊等SCI高影响因子期刊上发表100多篇SCI论文,被SCI引用总计5000多次。
学术论文: 
SCI Papers
2022
[121] Ma, T., T. Parker, S. Unger, J. Gewirtzman, N. Fetcher, M. L. Moody, and J. Tang, 2022. Responses of root phenology in ecotypes of Eriophorum vaginatum to transplantation and warming in the Arctic. Science of The Total Environment, 805, 149926.
 
2021
[120] Zhang, Yongguang, Zhang, Q., Liu, L., Zhang, Yangjian, Wang, Shaoqiang, Ju, W., Zhou, G., Zhou, L., Tang, J., Zhu, X., Wang, F., Huang, Y., Zhang, Z., Qiu, B., Zhang, X., Wang, Songhan, Huang, C., Tang, X., Zhang, J., 2021. ChinaSpec: A Network for Long‐Term Ground‐Based Measurements of Solar‐Induced Fluorescence in China. Journal of Geophysical Research: Biogeosciences. 126.
[119] Zhang, X., Cao, F., Huang, Y., Tang, J., 2021. Variability of dissolved organic matter in two coastal wetlands along the Changjiang River Estuary: Responses to tidal cycles, seasons, and degradation processes. Science of The Total Environment. 150993.
[118] Wang, F., Eagle, M., Kroeger, K.D., Spivak, A.C., Tang, J., 2021. Plant biomass and rates of carbon dioxide uptake are enhanced by successful restoration of tidal connectivity in salt marshes. Science of The Total Environment. 750, 141566. https://doi.org/10.1016/j.scitotenv.2020.141566
[117] Tan, L.-S., Ge, Z.-M., Li, S.-H., Li, Y.-L., Xie, L.-N., Tang, J.-W., 2021. Reclamation-induced tidal restriction increases dissolved carbon and greenhouse gases diffusive fluxes in salt marsh creeks. Science of The Total Environment. 773, 145684.
[116] Parker, T.C., Unger, S.L., Moody, M.L., Tang, J., Fetcher, N., 2021. Intraspecific variation in phenology offers resilience to climate change for Eriophorum vaginatum. Arctic Science. 1–17. https://doi.org/10.1139/as-2020-0039
 [115] Faming Wang, Christian J. Sanders, Isaac R. Santos, Jianwu Tang, Mark Schurech, Matthew L. Kirwan, Robert E. Kopp, Kai Zhu, Xiuzhen Li, Jiacan Yuan, Wenzhi Liu, Zhian Li. 2021. Global blue carbon accumulation in tidal wetlands increases with climate change. National Science Review, DOI:10.1093/nsr/nwaa296
 
2020
[114] Zheng, H., Zhou, L., Wei, J., Tang, Q., Zou, Y., Tang, J., Xu, H., 2020. Cover crops and chicken grazing in a winter fallow field improve soil carbon and nitrogen contents and decrease methane emissions. Scientific Reports. 10, 12607. https://doi.org/10.1038/s41598-020-69407-y
[113] Wang, L., Lin, Z., Liu, S., Fu, D., Li, Z., Luo, Q., Tang, J., Chen, Z., He, N., Wang, Y., 2020. The effect of extracellular electron transfer on arsenic speciation transformation in a soil bioelectrochemical system. Soil and Tillage Research. 204, 104723. https://doi.org/10.1016/j.still.2020.104723
[112] Mohl, J.E., Fetcher, N., Stunz, E., Tang, J., Moody, M.L., 2020. Comparative transcriptomics of an arctic foundation species, tussock cottongrass (Eriophorum vaginatum), during an extreme heat event. Scientific Reports. 10, 8990. https://doi.org/10.1038/s41598-020-65693-8
[111] Lu, X., Liu, Z., Zhao, F., Tang, J., 2020. Comparison of total emitted solar-induced chlorophyll fluorescence (SIF) and top-of-canopy (TOC) SIF in estimating photosynthesis. Remote Sensing of Environment. 251, 112083. https://doi.org/10.1016/j.rse.2020.112083
[110] Li, Y.-L., Guo, H.-Q., Ge, Z.-M., Wang, D.-Q., Liu, W.-L., Xie, L.-N., Li, S.-H., Tan, L.-S., Zhao, B., Li, X.-Z., Tang, J., 2020. Sea-level rise will reduce net CO2 uptake in subtropical coastal marshes. Science of The Total Environment. 747, 141214. https://doi.org/10.1016/j.scitotenv.2020.141214
[109] Huang, Y., Chen, Z., Tian, B., Zhou, C., Wang, J., Ge, Z., Tang, J., 2020. Tidal effects on ecosystem CO2 exchange in a Phragmites salt marsh of an intertidal shoal. Agricultural and Forest Meteorology. 292–293, 108108. https://doi.org/10.1016/j.agrformet.2020.108108
[108] Gao, Y., Peng, R., Ouyang, Z., Shao, C., Chen, J., Zhang, T., Guo, H., Tang, J., Zhao, F., Zhuang, P., Zhao, B., 2020. Enhanced Lateral Exchange of Carbon and Nitrogen in a Coastal Wetland With Invasive Spartina alterniflora. Journal of Geophysical Research: Biogeosciences. 125. https://doi.org/10.1029/2019JG005459
[107] Finzi, A.C., Giasson, M., Barker Plotkin, A.A., Aber, J.D., Boose, E.R., Davidson, E.A., Dietze, M.C., Ellison, A.M., Frey, S.D., Goldman, E., Keenan, T.F., Melillo, J.M., Munger, J.W., Nadelhoffer, K.J., Ollinger, S.V., Orwig, D.A., Pederson, N., Richardson, A.D., Savage, K., Tang, J., Thompson, J.R., Williams, C.A., Wofsy, S.C., Zhou, Z., Foster, D.R., 2020. Carbon budget of the Harvard Forest Long‐Term Ecological Research site: pattern, process, and response to global change. Ecological Monographs. https://doi.org/10.1002/ecm.1423
[106] Chen, X., Y. Huang, H. Yang, L. Pan, D. C. Perry, P. Xu, J. Tang, W. You, X. He, and Q. Wen, 2020. Restoring wetlands outside of the seawalls and to provide clean water habitat, Science of The Total Environment, 137788, doi:10.1016/j.scitotenv.2020.137788.
[105] Agusto, L. E., B. Thibodeau, J. Tang, F. Wang, and S. Cannicci, 2020. Fiddling with the carbon budget: fiddler crab burrowing activity increases wetland’s carbon flux, Geochemistry, doi:10.1002/essoar.10503504.1.
[104] Yang, H., J. Tang, C. Zhang, Y. Dai, C. Zhou, P. Xu, D. C. Perry, X. Chen, 2020.  Enhanced carbon uptake and reduced methane emissions in a newly restored wetland. Journal of Geophysical Research: Biogeosciences,125, https://doi.org/10.1029/2019JG005222.
Highlighted by Nature, January 16, 2020 https://www.nature.com/articles/d41586-020-00098-1
[103] Carey, J. C., J. Gewirtzman, S. E. Johnston, A. Kurtz, J. Tang, A. M. Vieillard, R. G. M. Spencer, 2020. Arctic river dissolved and biogenic silicon exports – current conditions and future changes with warming, Global Biogeochemical Cycles, 34,e2019GB006308. https://doi.org/10.1029/2019GB006308 (in press)
[102] Zhang, L., L. Zhou, J. Wei, H. Xu, Q. Tang, J. Tang, 2020. Integrating cover crops with chicken grazing to improve soil nitrogen in rice fields and increase economic output. Science of the Total Environment, 713: 135218.
[101] Tan, L. Z. Ge, X. Zhou, S. Li, X. Li, J. Tang, Conversion of coastal wetlands, riparian wetlands and peatlands increases greenhouse gas emissions: a meta-analysis, Global Change Biology, 26:1638–1653.
 
2019
[100] Tang, J., M. A. Bradford, J. Carey, T. W. Crowther, M. B. Machmuller, J. E. Mohan, and K. Todd-Brown, 2019. Temperature sensitivity of soil carbon, Ecosystem Consequences of Soil Warming,
175–208, doi:10.1016/B978-0-12-813493-1.00009-0.
[99] Zheng, H., X. Tang, J. Wei, H. Xu, Y. Zou, J. Tang, and Q. Tang, 2019. Effect of no-tillage management on soil organic matter and net greenhouse gas fluxes in a rice–oilseed rape cropping system: Atmospheric Pollution Research, doi:10.1016/j.apr.2019.12.008.
[98] Wang, F., X. Lu, C. Sanders, J. Tang, 2019. Tidal wetland resilience to sea level rise increases their carbon sequestration capacity in United States, Nature Communications, https://doi.org/10.1038/s41467-019-13294-z.
[97] Huang, Y., H. Guo,  X. Chen, Y. Zhou, Z. Chen, C. van der Tol, J. Tang, 2019. Meteorological controls on evapotranspiration over a coastal salt marsh ecosystem under tidal influence. Agricultural and Forest Meteorology. 279: 107755 
[96] Gewirtzman, J., J. Tang, J. M. Melillo, W. J. Werner, A. C. Kurtz, R. W. Fulweiler, J. C. Carey, Soil warming accelerates biogeochemical silica cycling in a temperate forest. Frontiers in Plant Science. doi: 10.3389/fpls.2019.01097.
[95] Liu, Z., X. Lu, S. An, M. Heskel, H. Yang, J. Tang, 2019. Advantage of multi-band solar-induced chlorophyll fluorescence to derive canopy photosynthesis in a temperate forest, Agricultural and Forest Meteorology, 279:1076912.
[94] Song, J. S. Wan, S. Piao, A. K. Knapp, A. T. Classen, S. Vicca, P. Ciais, M. J. Hovenden, S. Leuzinger, C. Beier, P. Kardol, J. Xia, Q. Liu, J. Ru, Z. Zhou, Y. Luo, D. Guo, J. A. Langley, J. Zscheischler, J. S. Dukes, J. Tang, J. Chen, K. S. Hofmockel, L. M. Kueppers, L. Rustad, L. Liu, M. D. Smith, P. H. Templer, R. Q. Thomas, R. J. Norby, R. P. Phillips, S. Niu, S. Fatichi, Y. Wang, D. Wang, L. Lei, J. Wang, X. Li, Q. Zhang, H. Han, P. Shao, X. Li, F. Su, B. Liu, F. Yang, G. Ma, G. Li, Y. Liu, Y. Liu, Z. Yang, K. Zhang, Y Miao, M. Hu, C. Yan, A. Zhang, M. Zhong, Y. Hui, Y. Li and M. Zheng, 2019. A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change. Nature Ecology and Evolution, 3: 1309–1320.
[93] Yang, H., X. Chen, J. Tang, L. Zhang, C. Zhang, D. Perry, W. You, 2019. External carbon addition increases nitrate removal and decreases nitrous oxide emission in a restored wetland. Ecological Engineering, 138: 200-208.
[92] Curasi, S. R., T. C. Parker, A. V. Rocha, M. L. Moody, J. Tang, N. Fetcher, 2019. Differential responses of ecotypes to climate in a ubiquitous Arctic sedge: implications for future ecosystem C cycling, New Phytologist, 223: 180–192, doi: 10.1111/nph.15790.
[91] Wang, F., K. D. Kroeger, M. Gonneea, J. W. Pohlman, J. Tang, 2019, Water salinity and inundation control soil carbon decomposition during salt marsh restoration: an incubation experiment, Ecology and Evolution, 9:1911–1921.
[90] Mo, Q., Z. Li, E. Sayer, H. Lambers, Y. Li, B. Zou, J. Tang, M. Heskel, Y. Ding, F. Wang, 2019. Foliar phosphorus fractions reveal how tropical plants maintain photosynthetic rates despite low soil phosphorus availability, Functional Ecology, 33:503–513.
[89] Liang, A., Y. Zhang, X. Zhang, X. Yang, N. McLaughlin, X. Chen, Y. Guo, S. Jia, S. Zhang, L. Wang, J. Tang, 2019, Investigations of relationships among aggregate pore structure, microbial biomass, and soil organic carbon in a Mollisol using combined non-destructive measurements and phospholipid fatty acid analysis. Soil & Tillage Research, 185:94-101.
[88] Tan, S., B. Chen, H. Zheng, F. Xu, H. Xu, J. Wei, H. Huang, J. Tang, 2019. Effects of cultivation techniques on CH4 emissions, net ecosystem production, and rice yield in a paddy ecosystem. Atmospheric Pollution Research, 10:274-282.
 
2018
[87] Carey, J. C., K. D. Kroeger, B. Zafari, J. Tang, 2018. Passive experimental warming decouples air and sediment temperatures in a salt marsh, Limnology and Oceanography: Methods, 16:640-648.
[86] Heskel, M., J. Tang, 2018. Environmental controls on light inhibition of respiration and leaf and canopy daytime carbon exchange in a temperate deciduous forest, Tree Physiology, 38:1886-1902.
[85] Zheng, H., X. Wang, Y. Li, G. Huang, Q. Tang, J. Tang, 2018. Contributions of photosynthetic organs to the seed yield of hybrid rice: the effects of gibberellin application examined by carbon isotope technology, Seed Science and Technology, 46:533-546
[84] Lu, X., X. Cheng, X. Li., J. Chen, M. Sun, M. Ji, H. He, S. Wang, S. Li, J. Tang, 2018. Seasonal patterns of canopy photosynthesis captured by remotely sensed sun-induced fluorescence and vegetation indexes in mid-to-high latitude forests: a cross-platform comparison, Science of the Total Environment, 644:439-451.
[83] Lu, X., Z. Liu, Y. Zhou, Y, Liu, S. An, J. Tang, 2018. Comparison of phenology estimated from reflectance-based indices and solar-induced chlorophyll fluorescence (SIF) observations in a temperate forest using GPP-based phenology as the standard, Remote Sensing, 10,932, doi:10.3390/rs10060932.
[82] Abdul-Aziz, O. I., K. S. Ishtiaq, J. Tang, S. Moseman-Valtierra, K. D. Kroeger, M. E. Gonneea, J. Mora, and K. Morkeski, 2018. Environmental controls, emergent scaling, and predictions of greenhouse gas (GHG) fluxes in coastal salt marshes, Journal of Geophysical Research: Biogeoscience, 123:2234–2256.
[81] Liu, Z., S. An, X. Lu, H. Hu, J. Tang, 2018. Using canopy greenness index to identify leaf ecophysiological traits during the foliar senescence in an oak forest, Ecosphere, 9(7):e02337.10.1002/ecs2.2337.
[80] Baatz, R. P. L. Sullivan, L. Li, S. R. Weintraub, H. W. Loescher, M. Mirtl, P. M. Groffman, D. H. Wall, M. Young, T. White, H. Wen, S. Zacharias, I. Kühn, J. Tang, J. Gaillardet, I. Braud, A. N. Flores, P. Kumar, H. Lin, T. Ghezzehei, J. Jones, H. L. Gholz, H. Vereecken, and K. Van Looy, 2018. Steering operational synergies in terrestrial observation networks: opportunity for advancing Earth system dynamics modelling, Earth System Dynamics, 9:593-609.
[79] Lu, X., Z. Liu, Y. Zhou, Y. Liu, J. Tang, 2018. Performance of solar-induced chlorophyll fluorescence in estimating water-use efficiency in a temperate forest, Remote Sensing,10:796, doi:10.3390/rs10050796.
[78] Roberti, J. A., E. Ayres, H. W. Loescher, J. Tang, G. Starr,   D. J. Durden, D. E. Smith, E. de la Reguera, K. Morkeski, M. McKlveen, H. Benstead, M. D. SanClements, R. Lee, M. Gebremedhin, and R. C. Zulueta. A Robust Calibration Method for Continental-scale Soil Water Content Measurements, Vadose Zone Journal, 17:170177. doi:10.2136/vzj2017.10.0177.
[77] Djukic, I., S, Kepfer-Rojas, I. K. Schmidt,…J. Tang, …, 2018. Early stage litter decomposition across biomes, Science of the Total Environment, 628–629:1369–1394.
[76] Tang J., S. Ye, X. Chen, H. Yang, X. Sun, F. Wang, Q. Wen, S. Chen, 2018. Coastal blue carbon: Concept, study method, and the application to ecological restoration, Science China Earth Sciences, 61:637-646 https://doi.org/10.1007/s11430-017-9181-x
[75] Fan, J., R. Luo, D. Liu, Z. Chen, J. Luo, N. Boland, J. Tang, M. Hao, B. McConkey, W. Ding, 2018. Stover retention rather than no-till decreases the global warming potential of rainfed continuous maize cropland, Field Crops Research, 219:14-23.
[74] Lu, X., Z. Liu, S. An, D. G. Miralles, W. Maes, Y. Liu, J. Tang, 2018. Potential of solar-induced chlorophyll fluorescence to estimate transpiration in a temperate forest. Agricultural and Forest Meteorology, 252:75-87.
[73] Schedlbauer, J. L., N. Fetcher, K. Hood, M. L. Moody, and J. Tang, 2018. Effects of growth temperature on photosynthetic capacity and respiration in three ecotypes of Eriophorum vaginatum, Ecology and Evolution, 8:3711-3725, DOI: 10.1002/ece3.3939.
[72] Lu, X., X. Cheng, X. Li., J. Tang, 2018. Opportunities and challenges of applications of satellite-derived sun-induced fluorescence at relatively high spatial resolution. Science of Total Environment, 619-620:649-653.
 
2017
[71] He, H. X. Cheng, X. Li., R. Zhu, F. Hui, W. Wu, T. Zhao, J. Kang, J. Tang, 2017. Aerial photography based census of Adélie Penguin and its application in CH4 and N2O budget estimation in Victoria Land, Antarctic, Scientific Reports, 7:12942, DOI:10.1038/s41598-017-13380-6.
[70] Kroeger, K. D., S. Crooks, S. Moseman-Valtierra, J. Tang, 2017. Restoring tides to reduce methane emissions in impounded wetlands: A new and potent Blue Carbon climate change intervention, Scientific Reports, 7:11914, DOI:10.1038/s41598-017-12138-4.
[69] Parker, T., J. Tang, M. Clark, M. Moody, N. Fetcher, 2017. Ecotypic differences in the phenology of the tundra species Eriophorum vaginatum reflect sites of origin, Ecology and Evolution, 7:9775–9786.
[68] Carey, J.C., T. Parker, N. Fetcher, J. Tang, 2017. Biogenic silica accumulation varies across tussock tundra plant functional type, Functional Ecology. 31: 2177–2187.
[67] Wang, F., Y. Ding, E. Sayer, Q. Li, B. Zou, Q. Mo, Y. Li, X. Lu, J. Tang, W. Zhu, Z. Li, 2017. Tropical forest restoration: fast resilience of plant biomass contrasts with slow recovery of stable soil C stocks, Functional Ecology, 31:2344-2355.
[66] Yang, H., X. Yang, M. Heskel, S. Sun, J. Tang, 2017. Seasonal variations of leaf and canopy properties tracked by ground-based NDVI imagery in a temperate forest, Scientific Reports, 7:1267, DOI:10.1038/s41598-017-01260-y.
[65] Chen, Z., Y. Xu, X. Zhou, J, Tang, Y. Kuzyakov, H. Yu, J. Fan, W. Ding, 2017. Extreme rainfall and snowfall alter responses of soil respiration to nitrogen fertilization: a 3-year field experiment, Global Change Biology, 23: 3403–3417.
[64] de la Reguera, E., E. A. Castner, J. N. Galloway, A. M. Leach, N. Leary, J. Tang, 2017. Defining system boundaries for assessing of an institutional nitrogen footprint, Sustainability: The Journal of Record, 10:123-130.
[63] Phillips, C.L., B. Bond-Lamberty, A. R. Desai, M. Lavoie, D. Risk, J. Tang, K. Todd-Brown, R. Vargas, 2017. The value of soil respiration measurements for interpreting and modeling terrestrial carbon cycling, Plant and Soil, 413:1-25.
[62] Yang, H., J. Tang, X. Yang, Y. Zhang, M. A. Heskel,  X, Lu, S. Sun, J. W. Munger, 2017. Chlorophyll fluorescence tracks seasonal variations of photosynthesis from leaf to canopy in a temperate forest, Global Change Biology, 23: 2874-2886.  
[61] Chen, X. G. Zeng, Q. Xie, Y. Chen, Y. Huang, J. Qiu, J. Cai, C. Chen, J. Tang, 2017. A novel combined recirculating treatment system for intensive marine aquaculture, Aquaculture Research, 48:5062–5071.
[60] Meredith, L. K., R. Commane, T. F. Keenan, S. T. Klosterman, J. W. Munger, P.  H. Templer, J. Tang, S. C. Wofsy, R. G. Prinn, 2017. Ecosystem fluxes of hydrogen in a mid-latitude forest driven by soil microbes and plants. Global Change Biology, 23: 906-919.
[59] Zheng, H., H. Huang, C. Chen, Z. Fu, R. Yang, H. Xu, S. Tan, W. She, X. Liao, J. Tang, 2017. Traditional symbiotic farming technology in China promotes the sustainability of a flooded rice production system, Sustainability Science, 12:155–161.
 
2016
[58] Moseman-Valtierra,S., O. I. Abdul-Aziz, J. Tang, K. S. Ishtiaq, K. Morkeski, J. Mora, R. K. Quinn, R. M. Martin, K. Egan, E. Q. Brannon, J. Carey, K. D. Kroeger, 2016. Carbon dioxide fluxes reflect plant zonation and belowground biomass in a coastal marsh, Ecosphere, 7(11):e01560. 10.1002/ecs2.1560.
[57] Zhang, Y., L. Guanter, J. A. Berry, C. van der Tol, X. Yang, J. Tang, 2016. Model-based analysis of the relationship between sun-induced chlorophyll fluorescence and gross primary production across scales for remote sensing applications, Remote Sensing of Environment, 187:145-155.
[56] Carey, J. C., J. Tang, P. H. Templer, K. D. Kroeger, T. W. Crowther, A. Burton, J. S. Dukes, B.  Emmett, S. Frey, M. Heskel, L. Jiang, M. Machmuller, J. E. Mohan, A. M. Panetta, P. B. Reich, S. Reinsch, X. Wang, S. D. Allison, C. Bamminger, S. D. Bridgham, S. L. Collins, G. de Dato, W. C. Eddy, B. J. Enquist, M. Estiarte, J. Harte,  A. Henderson, B.  R. Johnson, K. S. Larsen, Y. Luo, S. Marhan, J. Melillo, L. Pfeifer-Meister, J. Peñuelas, C. Poll, E. B. Rastetter, A. Reinmann, L. L. Reynolds, I. K. Schmidt, G. R. Shaver, A. L. Strong, V. Sussala, A. Tietema, 2016. Temperature response of soil respiration largely unaltered with experimental warming, Proceedings of the National Academy of Sciences of the USA (PNAS), 113:13797–13802.
[55] Tang, J., C. Körner, H. Muraoka, S. Piao, M. Shen, S. J. Thackeray, X. Yang, 2016. Emerging opportunities and challenges in phenology: A review, Ecosphere, 7(8):e01436,10.1002/ecs2.1436.
[54] Yang, X., J. Tang, J. F. Mustard, J. Wu, K. Zhao, S. Serbin, J. Lee, 2016. Seasonal variability of multiple leaf traits captured by leaf spectroscopy at two temperate deciduous forests, Remote Sensing of Environment, 179:1-12.
[53] Brannon, E. Q., S. M. Moseman-Valtierra, C. W. Rella, R. M. Martin, X. Chen, J. Tang, 2016. Evaluation of laser-based spectrometers for greenhouse gas flux measurements in coastal marshes, Limnology and Oceangraphy-Methods, 14: 466-476.
[52] Niu, S, A. T. Classen, J. Dukes, P. Kardol, L. Liu, Y. Luo, L. Rustad, J. Sun, J. Tang, P. H. Templer, R. Q. Thomas, D. Tian, S. Vicca, Y. Wang, J. Xia, S. Zaehle, 2016. Global patterns and substrate-based mechanisms of the terrestrial nitrogen cycle, Ecology Letters, 19: 697–709.
[51] Chen, Y., E.J. Sayer, Z. Li, Q. Mo, Y. Li, Y. Ding, J. Wang, X. Lu, J. Tang, F. Wang, 2016. Nutrient limitation of woody debris decomposition in a tropical forest: Contrasting effects of N and P addition, Functional Ecology, 30:295-304, DOI:10.1111/1365-2435.12471.
[50] Liu, L., C. Hu, P. Yang, Z. Ju, J. Olesen, J. Tang, 2016. Experimental warming-driven soil drying reduced N2O emissions from fertilized crop rotations of winter wheat-soybean/fallow, 2009-2014, Agriculture, Ecosystems and Environment, 219:71-82.
 
2015
[49] Liu, Z., H. Hu, H. Yu, X. Yang, H. Yang, C. Ruan, Y. Wang, J. Tang, 2015. Relationship between leaf physiological traits and canopy color indices during the spring leaf-expansion period in an oak forest, Ecosphere, 6(12):259. http://dx.doi.org/10.1890/ES14-00452.1.
[48] Wang, Y., H. Zhang, J. Tang, J. Xu, T. Kou, H. Huang, 2015. Accelerated phosphorus accumulation and acidification of soils under plastic greenhouse condition in four representative organic vegetable cultivation sites, Scientia Horticulturae,195(11):67–73.
[47] Mo, Q., B. Zou, Y. Li, Y. Chen, W. Zhang, R. Mao, J. Wang, X. Lu, X. Li, J. Tang, Z. Li, F. Wang, 2015. Response of plant nutrient stoichiometry to fertilization varies with plant tissues in a tropical forest, Scientific Reports, 5:14605, DOI:10.1038/srep14605.
[46] Gelfand, I., M. Cui, J. Tang, G. P. Robertson, 2015. Short-term drought response of N2O and CO2 emissions from mesic agricultural soils in the US Midwest, Agriculture, Ecosystems, and Environment, 212:127–133.
[45] Chen, C., D. Li, Z. Gao, J. Tang, X. Guo, L. Wang, B. Wan, 2015, Seasonal and interannual variation of carbon exchange over a rice–wheat rotation system on the north China plain, Advances in Atmospheric Sciences, 32:1365-1380.
[44] Yang, X., J. Tang, J. Mustard, J.-E. Lee, M. Rossini, J. Joiner, J. W. Munger, A. Kornfeld, A. D. Richardson, 2015. Solar-induced chlorophyll fluorescence that correlates with canopy photosynthesis on diurnal and seasonal scales in a temperate deciduous forest, Geophysical Research Letters, 42(8):2977–2987.
[43] Liu, L., C. Hu, P. Yang, Z. Ju, J. Olesen, J. Tang, 2015. Effects of experimental warming and nitrogen addition on soil respiration and CH4 fluxes from crop rotations of winter wheat-soybean/fallow, Agricultural and Forest Meteorology, 207:38-47.
[42] Chen, X., S. He, Y. Zhang, X. Huang, Y. Huang, D. Chen, X. Huang, J. Tang, 2015. Enhancement of nitrate removal at the sediment–water interface by carbon addition plus vertical mixing, Chemosphere, 136:305-310.
[41] Shibata, H., C. Branquinho, W. H. McDowell, M. J. Mitchell, D. Monteith, J. Tang, L. Arvola, C. Cruz, C. Máguas, D. Cusack, L. Halada, J. Kopacek, S. Sajidu, H. Schubert, N. Tokuchi, J. Záhora. 2015. Consequence of altered nitrogen cycles in the coupled human and ecological system under changing climate: The need for long-term and site-based research, Ambio, 44:178-193.
 
2014
[40] Wang, Y., J. Tang, H. Zhang, T. Kou, 2014. Aggregate-associated organic carbon and nitrogen impacted by the long-term combined application of rice straw and pig manure in the red soils in south China, Soil Science, 179:522-528.
[39] Hickman, J. E., C. A. Palm, P. Mutuo, J. M. Melillo, J. Tang, 2014. Nitrous oxide (N2O) emissions in response to increasing fertilizer addition in maize (Zea mays L.) agriculture in western Kenya, Nutrient Cycling in agroecosystems, 100(2):177-187.
[38] Meredith, L. K., R. Commane, A. Dunn, J. W. Munger, J. Tang, S. C. Wofsy, R. G. Prinn, 2014. Ecosystem fluxes of hydrogen: a comparison of flux-gradient methods, Atmospheric Measurement Techniques, 7:2787–2805.
[37] Wang, X., L. Liu, S. Piao, I. Janssens, J. Tang, W. Liu, Y. Chi, J. Wang, S. Xu, 2014. Soil respiration under climate warming: differential response of heterotrophic and autotrophic respiration, Global Change Biology, 20: 3229-3237.
[36] Wang, Y, J. Tang, H. Zhang, J. Schroder, Y. He, 2014, Phosphorus availability and sorption as affected by long-term fertilization, Agronomy Journal, 106:1583-1592. doi:10.2134/agronj14.0059.
[35] Tang, J., S. Luyssaert, A. D. Richardson, W. Kutsch, I. A. Janssens, 2014. Steeper declines in forest photosynthesis than respiration explain age-driven decreases in forest growth, Proceedings of the National Academy of Sciences of the USA (PNAS), 111(24): 8856-8860.
[34] Zheng, H., H. Huang, L. Yao, J. Liu, H. He, J. Tang, 2014, Impacts of rice varieties and management on yield-scaled greenhouse gas emissions from rice fields in China: A meta-analysis, Biogeosciences, 11: 3685–3693.
[33] Yang, X., J. Tang, J. Mustard, 2014. Beyond leaf color: comparing camera-based phenological metrics with leaf biochemical, biophysical and spectral properties throughout the growing season of a temperate deciduous forest, Journal of Geophysical Research-Biogeosciences, 119: 181–191, doi:10.1002/2013JG002460.
 
2013
[32] Tang, J. M., and J. W. Tang, 2013. Linking spatial pattern and biophysical parameters of urban vegetation by multitemporal Landsat imagery, IEEE Geoscience and Remote Sensing Letters, 10(5): 1263-1267, doi:10.1109/lgrs.2013.2259795.
[31] Giasson, M.-A.,A. M. Ellison, R. D. Bowden, P. M. Crill, E. A. Davidson, J. E. Drake, S. D. Frey, J. L. Hadley, M. Lavine, J. M. Melillo, J. W. Munger, K. J. Nadelhoffer, E. Nicoll, S. V. Ollinger, K. E. Savage, P. A. Steudler, J. Tang, R. K. Varner, S. C. Wofsy, D. R. Foster, and A. C. Finzi, 2013. Soil respiration in a northeastern US temperate forest: a 22-year synthesis, Ecosphere, 4(11):140. http://dx.doi.org/10.1890/ES13.00183.1.
[30] Hopkins, F., M. A. Gonzalez-Meler, C. E. Flower, D. J. Lynch, C. Czimczik,  J. Tang, J.-A. Subke, 2013. Ecosystem-level controls on root-rhizosphere respiration, New Phytologist, 199: 339–351.
[29] Savage K., E. A. Davidson, J. Tang, 2013. Diel patterns of autotrophic and heterotrophic respiration among phenological stages, Global Change Biology, 19: 1151–1159.
[28] Vihervaara P., D. D'Amato, M. Forsius, P. Angelstam, C. Baessler, P. Balvanera, B. Boldgiv, P. Bourgeron, J. Dick, R. Kanka , S. Klotz, M. Maass, V. Melecis, P. Petřík, H. Shibata, J. Tang, J. Thompson, S. Zacharias, 2013. Using long-term ecosystem service and biodiversity data to study the impacts of and adaptation options in response to climate change: insights from the global ILTER sites network, Current Opinion in Environmental Sustainability, 5:53-66.
 
2012
[27] Yang, X., J. F. Mustard, J. Tang, H. Xu, 2012. Regional scale phenology modeling based on meteorological records and remote sensing observations, Journal of Geophysical Research-Biogeosciences, 117, G03029, doi:10.1029/2012JG001977.
 
2011
[26] Liu S., B. Bond-Lamberty, J. A. Hicke, R. Vargas, S. Zhao, J. Chen, S. L. Edburg, J. Liu, A. D. McGuire, J. Xiao, R. Keane, W. Yuan, J. Tang, Y. Luo, C. Potter, and J. Oeding, 2011. Simulating the impacts of disturbances on forest carbon cycling in North America: processes, data, models, and challenges, Journal of Geophysical Research-Biogeosciences, 116, G00K08, doi:10.1029/2010JG001585.
[25] Cao, S., G. Sun, Z. Zhang, L. Chen, Q. Feng, B. Fu, S. McNulty, D. Shankman, J. Tang, Y. Wang, X. Wei, 2011. Greening China naturally, Ambio, 40: 828-831. DOI: 10.1007/s13280-011-0150-8.
[24] Moseman-Valtierra S., R. Gonzalez, K. Kroeger, J. Tang, W. Chao, J. Crusius, J. Bratton, A. Green and J. Shelton, 2011. Short-term nitrogen additions can shift a coastal wetland from a sink to a source of N2O, Atmospheric Environment, 45: 4390-4397.
[23] Zhou, Y.M., J. Tang, J.M. Melillo, S. Butler, J.E. Mohan, 2011. Root standing crop and chemistry after six years of soil warming in a temperate forest, Tree Physiology, 31: 707-717.
[22] Chen, L., Z. Zhang, Z. Li, J. Tang, P. Caldwell, W. Zhang, 2011. Biophysical control of whole tree transpiration under an urban environment in Northern China, Journal of Hydrology, 402: 388-400.
[21] Melillo J.M., S. Butler, J. Johnson, J. Mohan, P.A. Steudler, H. Lux, E. Burrows, F. Bowles, R. Smith, T. Hill, C. Vario, A.J. Burton, Y. Zhou, J. Tang, 2011. Soil warming, carbon-nitrogen interactions, and forest carbon budgets, Proceedings of the National Academy of Sciences of the USA (PNAS), 108: 9508-9512.
Highlighted by “Faculty of 1000 Biology”
[20] Harmon M.E., B. Bond-Lamberty, J. Tang, and R. Vargas, 2011. Heterotrophic respiration in disturbed forests: A review with examples from North America, Journal of Geophysical Research-Biogeosciences 116, G00K04, doi:10.1029/2010JG001495.
 
2010
[19] Liang N., T. Hirano, Z.-M. Zheng, J. Tang, Y. Fujinuma, 2010. Soil CO2 efflux of a larch forest in northern Japan, Biogeosciences, 7: 3447–3457.
[18] Vargas R., D. Baldocchi, M. Allen, M. Bahn, T. Black, S. Collins, J. Curiel Yuste, T. Hirano, R. Jassal, J. Pumpanen, J. Tang, 2010. Looking deeper into the soil: biophysical controls and seasonal lags of soil CO2 production and efflux, Ecological Applications, 20: 1569-1582.
[17] Bahn M., M. Reichstein, E. A. Davidson, J. Grünzweig, M. Jung, M. S. Carbone, D. Epron, L. Misson, Y. Nouvellon, O. Roupsard, K. Savage, S. E. Trumbore, C. Gimeno, J. Curiel Yuste, J. Tang, R. Vargas, and I. A. Janssens, 2010. Soil respiration at mean annual temperature predicts annual total across vegetation types and biomes, Biogeosciences, 7: 2147–2157, doi:10.5194/bg-7-2147-2010.
[16] Janssens I.A., W. Dieleman, S. Luyssaert, J.-A. Subke, M. Reichstein, R. Ceulemans, P. Ciais, A.J. Dolman, J. Grace, G. Matteucci, D. Papale, S.L. Piao, E.-D. Schulze, J. Tang, B.E. Law, 2010. Reduction of forest soil respiration in response to nitrogen deposition, Nature Geoscience, 3: 315-322.
 
2009
[15] Tang, J., P.V. Bolstad, J.G. Martin, 2009. Soil carbon fluxes and stocks in a Great Lakes forest chronosequence, Global Change Biology, 15: 145-155.
 
2008
[14] Tang, J., P.V. Bolstad, A.R. Desai, J.G. Martin, B.D. Cook, K.J. Davis, E.V. Carey,  2008. Ecosystem respiration and its components in an old-growth forest in the Great Lakes region of the United States, Agricultural and Forest Meteorology, 148: 171-185.
[13] Ewers, B.E., D.S. Mackay, J. Tang, P. Bolstad, S. Samanta, 2008.  Intercomparison of sugar maple (Acer sacchrum Marsh.) stand transpiration responses to environmental conditions from the western Great Lakes Region of the United States, Agricultural and Forest Meteorology, 148: 231-246.
[12] Desai, A.R., A.N. Noormets, P.V. Bolstad, J. Chen, B.D. Cook, P.V. Curtis, K.J. Davis, E.S. Euskirchen, C. Gough, J.M. Martin, D.M. Ricciuto, H.P. Schmid, H. Su, J. Tang, C. Vogel, W. Wang, 2008. Influence of vegetation type, stand age and climate on carbon dioxide fluxes across the Upper Midwest, USA: Implications for regional scaling of carbon flux, Agricultural and Forest Meteorology, 148: 288-308.
 
2007
[11] Luyssaert S., I. Inglima, M. Jung, A.D. Richardson, M. Reichstein, D. Papale, S.L. Piao, E.D. Schulze, L. Wingate, G. Matteucci, L. Aragao, M. Aubinet, C. Beer, C. Bernhofer, K.G. Black, D. Bonal, J.M. Bonnefond, J. Chambers, P. Ciais, B. Cook, K.J. Davis, A.J. Dolman, B. Gielen, M. Goulden, J. Grace, A. Granier, A. Grelle, T. Griffis, T. Grunwald, G. Guidolotti, P.J. Hanson, R. Harding, D.Y. Hollinger, L.R. Hutyra, P. Kolari, B. Kruijt, W. Kutsch, F. Lagergren, T. Laurila, B. E. Law, G. Le Maire, A. Lindroth, D. Loustau, Y. Malhi, J. Mateus, M. Migliavacca, L. Misson, L. Montagnani, J. Moncrieff, E. Moors, J.W. Munger, E. Nikinmaa, S. V. Ollinger, G. Pita, C. Rebmann, O. Roupsard, N. Saigusa, M. J. Sanz, G. Seufert, C. Sierra, M.-L. Smith, J. Tang, R. Valentini, T. Vesala, and I. A. Janssens, 2007. CO2 balance of boreal, temperate, and tropical forests derived from a global database, Global Change Biology, 13: 2509-2537.
 
2006
[10] Tang, J., P.V. Bolstad, B.E. Ewers, A.R. Desai, K.J. Davis, E.V. Carey, 2006. Sap-flux- upscaled canopy transpiration, stomatal conductance and water use efficiency in an old-growth forest in the Great Lakes region of United States, Journal of Geophysical Research-Biogeosciences, 111, G02009, doi:10.1029/2005JG000083.
[9] Baldocchi, D.D., J. Tang, L. Xu, 2006. How lags, pulses and switches in biophysical regulators affect spatio-temporal variation of soil respiration in an oak-grass savanna, Journal of Geophysical Research – Biogeosciences, 111, G02008, doi:10.1029/2005JG000063.
[8] Misson, L., A. Gershenson, J. Tang, R. Boniello, M. McKay, W. Cheng, A. Goldstein, 2006. Influence of canopy photosynthesis and rain pulses on root dynamics and soil respiration in a young ponderosa pine forest, Tree Physiology, 26: 833-844.
 
2005
[7] Tang, J., D.D. Baldocchi, L. Xu, 2005. Tree photosynthesis modulates soil respiration on a diurnal time scale, Global Change Biology, 11: 1298-1304.
Highlighted by “Faculty of 1000 Biology” as “New Finding.”
[6] Tang, J., L. Misson, A. Gershenson, W. Cheng, A. Goldstein, 2005. Continuous measurements of soil respiration with and without roots in a ponderosa pine plantation in the Sierra Nevada Mountains, Agricultural and Forest Meteorology, 132: 212-227.
[5] Tang, J., D.D. Baldocchi, 2005. Spatial-temporal variation of soil respiration in an oak-grass savanna ecosystem in California and its partitioning into autotrophic and heterotrophic components, Biogeochemistry, 73: 183-207.
[4] Tang, J., Y. Qi, M. Xu, L. Misson, A. Goldstein, 2005. Forest thinning and soil respiration in a ponderosa pine plantation in the Sierra Nevada, Tree Physiology, 25: 57-66.
[3] Misson, L., J. Tang, M. Xu, M. McKay, A. Goldstein, 2005. Influences of recovery from clear-cut, climate variability, and thinning on the carbon and energy balance of a young ponderosa pine plantation, Agricultural and Forest Meteorology, 130: 207-222.
 
2004
[2] Xu, L., D.D. Baldocchi, J. Tang, 2004. How soil moisture, rain pulses and growth alter the response of ecosystem respiration to temperature, Global Biogeochemical Cycles,18, GB4002, doi:10.1029/2004GB002281.
 
2003
[1] Tang, J., D.D. Baldocchi, Y. Qi, L. Xu, 2003. Assessing soil CO2 efflux using continuous measurements of CO2 within the soil profile with small solid-state sensors, Agricultural and Forest Meteorology, 118: 207-220.